Let x0 of type ι be given.
Let x1 of type ι → ι → ι → ι → ο be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι be given.
Let x4 of type ι → ι be given.
Let x5 of type ι → ι be given.
Let x6 of type ι → ι be given.
Let x7 of type ι be given.
Let x8 of type ι → ο be given.
Let x9 of type ι be given.
Let x10 of type ι be given.
Let x11 of type ι be given.
Let x12 of type ι be given.
Let x13 of type ι be given.
Let x14 of type ι → ο be given.
Let x15 of type ι → ο be given.
Let x16 of type ι → ι be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι → ο be given.
Let x20 of type ι → ι be given.
Let x21 of type ι → ι be given.
Let x22 of type ι → ι be given.
Let x23 of type ι → ι → ο be given.
Let x24 of type ι → ι → ο be given.
Let x25 of type ι → ο be given.
Let x26 of type ι → ι → ο be given.
Let x27 of type ι → ι → ι be given.
Let x28 of type ι → ι be given.
Let x29 of type ι → ι be given.
Let x30 of type ι → ι → ι → ο be given.
Let x31 of type ι → ι → ι → ι → ι be given.
Let x32 of type ι → ι → ι → ι → ι be given.
Let x33 of type ι → ι → ο be given.
Let x34 of type ι → ι → ι → ο be given.
Let x35 of type ι be given.
Let x36 of type ι → ο be given.
Assume H5:
∀ x37 x38 x39 x40 x41 . (x36 x41 ⟶ False) ⟶ x25 x37 ⟶ x34 x37 x41 x35 ⟶ x26 x37 (x28 (x27 x41 x35)) ⟶ x25 x40 ⟶ x34 x40 x41 x35 ⟶ x26 x40 (x28 (x27 x41 x35)) ⟶ x26 x38 (x28 (x29 x41)) ⟶ x33 x39 x41 ⟶ x30 x41 x37 x40 ⟶ (x30 x41 (x32 x41 x37 x38 x39) (x31 x41 x40 x38 x39) ⟶ False) ⟶ False.
Assume H6:
∀ x37 x38 . x36 x38 ⟶ (x38 = x37 ⟶ False) ⟶ x36 x37 ⟶ False.
Assume H7:
∀ x37 x38 . x24 x37 x38 ⟶ x36 x38 ⟶ False.
Assume H8:
∀ x37 . x36 x37 ⟶ (x37 = x0 ⟶ False) ⟶ False.
Assume H9:
∀ x37 x38 x39 . x24 x37 x38 ⟶ x26 x38 (x28 x39) ⟶ x36 x39 ⟶ False.
Assume H10:
∀ x37 x38 x39 . x24 x38 x39 ⟶ x26 x39 (x28 x37) ⟶ (x26 x38 x37 ⟶ False) ⟶ False.
Assume H11:
∀ x37 x38 . x23 x38 x37 ⟶ (x26 x38 (x28 x37) ⟶ False) ⟶ False.
Assume H12:
∀ x37 x38 . x26 x38 (x28 x37) ⟶ (x23 x38 x37 ⟶ False) ⟶ False.
Assume H13:
∀ x37 x38 . x26 x37 x38 ⟶ (x36 x38 ⟶ False) ⟶ (x24 x37 x38 ⟶ False) ⟶ False.
Assume H14:
∀ x37 x38 . x24 x38 x37 ⟶ (x26 x38 x37 ⟶ False) ⟶ False.
Assume H15:
∀ x37 x38 x39 x40 . (x36 x40 ⟶ False) ⟶ x25 x37 ⟶ x34 x37 x40 x35 ⟶ x26 x37 (x28 (x27 x40 x35)) ⟶ x25 x39 ⟶ x34 x39 x40 x35 ⟶ x26 x39 (x28 (x27 x40 x35)) ⟶ x25 x38 ⟶ x34 x38 x40 x35 ⟶ x26 x38 (x28 (x27 x40 x35)) ⟶ x30 x40 x37 x39 ⟶ x30 x40 x39 x38 ⟶ (x30 x40 x37 x38 ⟶ False) ⟶ False.
Assume H16:
∀ x37 x38 x39 x40 . ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ x26 ... ... ⟶ x25 x38 ⟶ x34 x38 x40 x35 ⟶ x26 x38 (x28 (x27 x40 x35)) ⟶ x30 x40 x37 x39 ⟶ x30 x40 x39 x37 ⟶ (x1 x40 x35 x37 x39 ⟶ False) ⟶ False.