Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ιο be given.
Let x3 of type ιο be given.
Let x4 of type ι be given.
Claim L0: ...
...
Claim L1: ∀ x5 : ι → ο . (∀ x6 . x6x0iff (x2 x6) (x5 x6))(λ x6 . λ x7 : ι → ο . unpack_p_o (pack_p x1 x3) (λ x8 . λ x9 : ι → ο . (λ x10 . λ x11 : ι → ο . λ x12 . λ x13 : ι → ο . and (x4setexp x12 x10) (∀ x14 . x14x10x11 x14x13 (ap x4 x14))) x6 x7 x8 x9)) x0 x5 = (λ x6 . λ x7 : ι → ο . unpack_p_o (pack_p x1 x3) (λ x8 . λ x9 : ι → ο . (λ x10 . λ x11 : ι → ο . λ x12 . λ x13 : ι → ο . and (x4setexp x12 x10) (∀ x14 . x14x10x11 x14x13 (ap x4 x14))) x6 x7 x8 x9)) x0 x2
Let x5 of type ιο be given.
Assume H1: ∀ x6 . x6x0iff (x2 x6) (x5 x6).
...
set y5 to be unpack_p_o (pack_p x0 x2) (λ x5 . λ x6 : ι → ο . unpack_p_o (pack_p x1 x3) (λ x7 . λ x8 : ι → ο . (λ x9 . λ x10 : ι → ο . λ x11 . λ x12 : ι → ο . and (x4setexp x11 x9) (∀ x13 . x13x9x10 x13x12 (ap x4 x13))) x5 x6 x7 x8))
set y6 to be (λ x6 . λ x7 : ι → ο . λ x8 . λ x9 : ι → ο . and (y5setexp x8 x6) (∀ x10 . x10x6x7 x10x9 (ap y5 x10))) x1 x3 x2 x4
Claim L2: ∀ x7 : ο → ο . x7 y6x7 y5
Let x7 of type οο be given.
Assume H2: x7 ((λ x8 . λ x9 : ι → ο . λ x10 . λ x11 : ι → ο . and (y6setexp x10 x8) (∀ x12 . x12x8x9 x12x11 (ap y6 x12))) x2 x4 x3 y5).
Apply unpack_p_o_eq with λ x8 . λ x9 : ι → ο . unpack_p_o (pack_p x3 y5) (λ x10 . λ x11 : ι → ο . (λ x12 . λ x13 : ι → ο . λ x14 . λ x15 : ι → ο . and (y6setexp x14 x12) (∀ x16 . x16x12x13 x16x15 (ap y6 x16))) x8 x9 x10 x11), x2, x4, λ x8 : ο . x7 leaving 2 subgoals.
The subproof is completed by applying L1.
Apply unpack_p_o_eq with (λ x8 . λ x9 : ι → ο . λ x10 . λ x11 : ι → ο . and (y6setexp x10 x8) (∀ x12 . x12x8x9 x12x11 (ap y6 x12))) x2 x4, x3, y5, λ x8 : ο . x7 leaving 2 subgoals.
The subproof is completed by applying L0 with x4.
The subproof is completed by applying H2.
Let x7 of type οοο be given.
Apply L2 with λ x8 : ο . x7 x8 y6x7 y6 x8.
Assume H3: x7 y6 y6.
The subproof is completed by applying H3.