pf |
---|
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι be given.
Let x3 of type ι → ι be given.
Let x4 of type ι → ι → ο be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ο be given.
Let x7 of type ι → ο be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Apply unknownprop_61cca6b46eab5f5a7dcab84ee67aac409ee6318930cc775bcbcb5ad5034e6e6f with c7d1f.. x0 x2 x4 x6 x8, x1, x3, x5, x7, x9.
The subproof is completed by applying H0.
Claim L2: x0 = x1
Apply L1 with λ x10 x11 . x0 = x11.
The subproof is completed by applying unknownprop_1b2e762fd8f25bb145cbb129ef3dfe053d045a0d61a7627c90cf9e56c2249738 with x0, x2, x4, x6, x8.
Apply and5I with x0 = x1, ∀ x10 . prim1 x10 x0 ⟶ x2 x10 = x3 x10, ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x4 x10 x11 = x5 x10 x11, ∀ x10 . prim1 x10 x0 ⟶ x6 x10 = x7 x10, x8 = x9 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ι be given.
Apply unknownprop_8482b29062c8a6106f5dab65035d6d3e20a385ea1dc18096a6f4c6cce0ac93d5 with x0, x2, x4, x6, x8, x10, λ x11 x12 . x12 = x3 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . f482f.. (f482f.. x12 (4ae4a.. 4a7ef..)) x10 = x3 x10.
Let x11 of type ι → ι → ο be given.
Apply unknownprop_8482b29062c8a6106f5dab65035d6d3e20a385ea1dc18096a6f4c6cce0ac93d5 with x1, x3, x5, x7, x9, x10, λ x12 x13 . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Let x11 of type ι be given.
Apply unknownprop_12c6efd42213654930aac6fa5e2f9a09a7aaaea4c25796a7d4666d9e672b5dea with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 : ο . x13 = x5 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . 2b2e3.. (f482f.. x13 (4ae4a.. (4ae4a.. 4a7ef..))) x10 x11 = x5 x10 x11.
Let x12 of type ο → ο → ο be given.
Apply unknownprop_12c6efd42213654930aac6fa5e2f9a09a7aaaea4c25796a7d4666d9e672b5dea with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 : ο . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Apply unknownprop_a45abd536f0ab7db4999cd12ede789c19c9a8ae2b64f00ebaf91ff94aab6ce95 with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x7 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x10 = x7 x10.
Let x11 of type ο → ο → ο be given.
Apply unknownprop_a45abd536f0ab7db4999cd12ede789c19c9a8ae2b64f00ebaf91ff94aab6ce95 with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Apply unknownprop_a35ed9f7fda8ace7da0102061fd9347bffcb4f4a1c72e18d0b0708f16009da3f with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x9.
Apply H0 with λ x10 x11 . f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x9.
Let x10 of type ι → ι → ο be given.
The subproof is completed by applying unknownprop_a35ed9f7fda8ace7da0102061fd9347bffcb4f4a1c72e18d0b0708f16009da3f with x1, x3, x5, x7, x9, λ x11 x12 . x10 x12 x11.
■
|
|