Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x1 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x2 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x3 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x4 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x5 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Assume H0: ChurchNum_3ary_proj_p x0.
Assume H1: ChurchNum_3ary_proj_p x1.
Assume H2: ChurchNum_3ary_proj_p x2.
Assume H3: ChurchNum_8ary_proj_p x3.
Assume H4: ChurchNum_8ary_proj_p x4.
Assume H5: ChurchNum_8ary_proj_p x5.
Assume H6: TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x0 x3 = λ x6 x7 . x6.
Apply unknownprop_2064d925adb7ad93ca392156fe7b0a7b799e0a1ed452f931aaf6d83e86b04609 with x0, x3, not (∀ x6 : ο . ((x0 = λ x7 x8 x9 : (ι → ι)ι → ι . x7)(x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι)ι → ι . x11)x6)((x0 = λ x7 x8 x9 : (ι → ι)ι → ι . x8)(x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι)ι → ι . x8)x6)((x0 = λ x7 x8 x9 : (ι → ι)ι → ι . x8)(x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι)ι → ι . x14)x6)((x0 = λ x7 x8 x9 : (ι → ι)ι → ι . x9)(x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι)ι → ι . x11)x6)x6)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x1 x4 = λ x6 x7 . x6)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x2 x5 = λ x6 x7 . x6)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x3 x1 x4 = λ x6 x7 . x6)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x3 x2 x5 = λ x6 x7 . x6)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x4 x2 x5 = λ x6 x7 . x6)ChurchNums_3x8_neq (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x0 x3ChurchNums_3x8_neq (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x1 x4ChurchNums_3x8_neq (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x2 x5ChurchNums_3x8_neq x0 x3 x1 x4ChurchNums_3x8_neq x0 x3 x2 x5ChurchNums_3x8_neq x1 x4 x2 x5False leaving 14 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H3.
The subproof is completed by applying H6.
Assume H7: x0 = λ x6 x7 x8 : (ι → ι)ι → ι . x6.
Assume H8: x3 = λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6.
Assume H9: not (∀ x6 : ο . ((x0 = λ x7 x8 x9 : (ι → ι)ι → ι . x7)(x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι)ι → ι . x11)x6)((x0 = λ x7 x8 x9 : (ι → ι)ι → ι . x8)(x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι)ι → ι . x8)x6)((x0 = λ x7 x8 x9 : (ι → ι)ι → ι . x8)(x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι)ι → ι . x14)x6)((x0 = λ x7 x8 x9 : (ι → ι)ι → ι . x9)(x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι)ι → ι . x11)x6)x6).
Assume H10: TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x1 x4 = λ x6 x7 . x6.
Assume H11: TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x2 x5 = λ x6 x7 . x6.
Assume H12: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x3 x1 x4 = λ x6 x7 . x6.
Assume H13: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x3 x2 x5 = λ x6 x7 . x6.
Assume H14: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x4 x2 x5 = λ x6 x7 . x6.
Assume H15: ChurchNums_3x8_neq (λ x6 x7 x8 : (ι → ι)ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι)ι → ι . x6) x0 x3.
Apply H15 with .........ChurchNums_3x8_neq x0 x3 x2 x5ChurchNums_3x8_neq x1 x4 x2 x5False.
...
...
...
...
...
...
...
...
...
...
...