Let x0 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x1 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x3 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x4 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x5 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Apply unknownprop_2064d925adb7ad93ca392156fe7b0a7b799e0a1ed452f931aaf6d83e86b04609 with
x0,
x3,
not (∀ x6 : ο . ((x0 = λ x7 x8 x9 : (ι → ι) → ι → ι . x7) ⟶ (x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x11) ⟶ x6) ⟶ ((x0 = λ x7 x8 x9 : (ι → ι) → ι → ι . x8) ⟶ (x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x8) ⟶ x6) ⟶ ((x0 = λ x7 x8 x9 : (ι → ι) → ι → ι . x8) ⟶ (x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x14) ⟶ x6) ⟶ ((x0 = λ x7 x8 x9 : (ι → ι) → ι → ι . x9) ⟶ (x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x11) ⟶ x6) ⟶ x6) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x6 x7 x8 : (ι → ι) → ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι) → ι → ι . x6) x1 x4 = λ x6 x7 . x6) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x6 x7 x8 : (ι → ι) → ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι) → ι → ι . x6) x2 x5 = λ x6 x7 . x6) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x3 x1 x4 = λ x6 x7 . x6) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x3 x2 x5 = λ x6 x7 . x6) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x4 x2 x5 = λ x6 x7 . x6) ⟶ ChurchNums_3x8_neq (λ x6 x7 x8 : (ι → ι) → ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι) → ι → ι . x6) x0 x3 ⟶ ChurchNums_3x8_neq (λ x6 x7 x8 : (ι → ι) → ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι) → ι → ι . x6) x1 x4 ⟶ ChurchNums_3x8_neq (λ x6 x7 x8 : (ι → ι) → ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι) → ι → ι . x6) x2 x5 ⟶ ChurchNums_3x8_neq x0 x3 x1 x4 ⟶ ChurchNums_3x8_neq x0 x3 x2 x5 ⟶ ChurchNums_3x8_neq x1 x4 x2 x5 ⟶ False leaving 14 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H3.
The subproof is completed by applying H6.
Assume H7: x0 = λ x6 x7 x8 : (ι → ι) → ι → ι . x6.
Assume H8: x3 = λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι) → ι → ι . x6.
Assume H9:
not (∀ x6 : ο . ((x0 = λ x7 x8 x9 : (ι → ι) → ι → ι . x7) ⟶ (x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x11) ⟶ x6) ⟶ ((x0 = λ x7 x8 x9 : (ι → ι) → ι → ι . x8) ⟶ (x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x8) ⟶ x6) ⟶ ((x0 = λ x7 x8 x9 : (ι → ι) → ι → ι . x8) ⟶ (x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x14) ⟶ x6) ⟶ ((x0 = λ x7 x8 x9 : (ι → ι) → ι → ι . x9) ⟶ (x3 = λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x11) ⟶ x6) ⟶ x6).
Assume H15:
ChurchNums_3x8_neq (λ x6 x7 x8 : (ι → ι) → ι → ι . x6) (λ x6 x7 x8 x9 x10 x11 x12 x13 : (ι → ι) → ι → ι . x6) x0 x3.