Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ο be given.
Assume H0: ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3.
Let x3 of type ι be given.
Assume H3: x3 ∈ x1.
Let x4 of type ι be given.
Assume H5: x4 ∈ x0.
Let x5 of type ι be given.
Assume H6: x5 ∈ x0.
Let x6 of type ι be given.
Assume H7: x6 ∈ x0.
Let x7 of type ι be given.
Assume H8: x7 ∈ x0.
Let x8 of type ι be given.
Assume H9: x8 ∈ x0.
Let x9 of type ι be given.
Assume H10: x9 ∈ x0.
Apply setminusE with
x1,
Sing x3,
x4,
... ⟶ ∀ x10 : ο . (∀ x11 . ... ⟶ ∀ x12 . ... ⟶ ∀ x13 . ... ⟶ ∀ x14 . ... ⟶ ∀ x15 . ... ⟶ ∀ x16 . ... ⟶ 468d8.. x2 x3 ... ... ... ... ... ... ⟶ x10) ⟶ (∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ 58615.. x2 x11 x3 x12 x13 x14 x15 x16 ⟶ x10) ⟶ (∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ae7a6.. x2 x3 x11 x12 x13 x14 x15 x16 ⟶ x10) ⟶ (∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ 185eb.. x2 x3 x11 x12 x13 x14 x15 x16 ⟶ x10) ⟶ (∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ 18ba2.. x2 x11 x3 x12 x13 x14 x15 x16 ⟶ x10) ⟶ (∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ c8dd3.. x2 x11 x12 x13 x3 x14 x15 x16 ⟶ x10) ⟶ (∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ 843b8.. x2 x3 x11 x12 x13 x14 x15 x16 ⟶ x10) ⟶ x10 leaving 2 subgoals.