Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Apply explicit_OrderedField_E with x0, x1, x2, x3, x4, x5, ∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x5 x6 x7x5 (explicit_Field_minus x0 x1 x2 x3 x4 x7) (explicit_Field_minus x0 x1 x2 x3 x4 x6).
Assume H0: explicit_OrderedField x0 x1 x2 x3 x4 x5.
Apply explicit_Field_E with x0, x1, x2, x3, x4, (∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x5 x6 x7x5 x7 x8x5 x6 x8)(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0iff (and (x5 x6 x7) (x5 x7 x6)) (x6 = x7))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0or (x5 x6 x7) (x5 x7 x6))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x5 x6 x7x5 (x3 x6 x8) (x3 x7 x8))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x5 x1 x6x5 x1 x7x5 x1 (x4 x6 x7))∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x5 x6 x7x5 (explicit_Field_minus x0 x1 x2 x3 x4 x7) (explicit_Field_minus x0 x1 x2 x3 x4 x6).
Assume H1: explicit_Field x0 x1 x2 x3 x4.
Assume H2: ∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0prim1 (x3 x6 x7) x0.
Assume H3: ∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8.
Assume H4: ∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x3 x6 x7 = x3 x7 x6.
Assume H5: prim1 x1 x0.
Assume H6: ∀ x6 . prim1 x6 x0x3 x1 x6 = x6.
Assume H7: ∀ x6 . prim1 x6 x0∃ x7 . and (prim1 x7 x0) (x3 x6 x7 = x1).
Assume H8: ∀ x6 . ...∀ x7 . ...prim1 ... ....
...