Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Claim L1: ...
...
Claim L2: ...
...
Claim L3: ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . ∀ x3 : ι → ι → ο . unpack_r_i (pack_r x2 x3) ((λ x4 . λ x5 : ι → ι → ο . λ x6 . λ x7 : ι → ι → ο . unpack_r_i (pack_r x4 x5) ((λ x8 . λ x9 : ι → ι → ο . λ x10 . λ x11 : ι → ι → ο . pack_r (setexp x10 x8) (λ x12 x13 . ∀ x14 . x14x8∀ x15 . x15x8x9 x14 x15x11 (ap x12 x14) (ap x13 x15))) x6 x7)) x0 x1) = (λ x4 . λ x5 : ι → ι → ο . λ x6 . λ x7 : ι → ι → ο . unpack_r_i (pack_r x4 x5) ((λ x8 . λ x9 : ι → ι → ο . λ x10 . λ x11 : ι → ι → ο . pack_r (setexp x10 x8) (λ x12 x13 . ∀ x14 . x14x8∀ x15 . x15x8x9 x14 x15x11 (ap x12 x14) (ap x13 x15))) x6 x7)) x0 x1 x2 x3
Let x0 of type ι be given.
Let x1 of type ιιο be given.
Let x2 of type ι be given.
Let x3 of type ιιο be given.
Apply unpack_r_i_eq with (λ x4 . λ x5 : ι → ι → ο . λ x6 . λ x7 : ι → ι → ο . unpack_r_i (pack_r x4 x5) ((λ x8 . λ x9 : ι → ι → ο . λ x10 . λ x11 : ι → ι → ο . pack_r (setexp x10 x8) (λ x12 x13 . ∀ x14 . ...∀ x15 . ...x9 x14 x15x11 (ap x12 x14) (ap x13 x15))) ... ...)) ... ..., ..., ....
...
Let x0 of type ι be given.
Let x1 of type ιιο be given.
Let x2 of type ι be given.
Let x3 of type ιιο be given.
set y4 to be unpack_r_i (pack_r x0 x1) ((λ x4 . λ x5 : ι → ι → ο . λ x6 . λ x7 : ι → ι → ο . unpack_r_i (pack_r x4 x5) ((λ x8 . λ x9 : ι → ι → ο . λ x10 . λ x11 : ι → ι → ο . pack_r (setexp x10 x8) (λ x12 x13 . ∀ x14 . x14x8∀ x15 . x15x8x9 x14 x15x11 (ap x12 x14) (ap x13 x15))) x6 x7)) x2 x3)
set y5 to be (λ x5 . λ x6 : ι → ι → ο . λ x7 . λ x8 : ι → ι → ο . pack_r (setexp x7 x5) (λ x9 x10 . ∀ x11 . x11x5∀ x12 . x12x5x6 x11 x12x8 (ap x9 x11) (ap x10 x12))) x1 x2 x3 y4
Claim L4: ∀ x6 : ι → ο . x6 y5x6 y4
Let x6 of type ιο be given.
Assume H4: x6 ((λ x7 . λ x8 : ι → ι → ο . λ x9 . λ x10 : ι → ι → ο . pack_r (setexp x9 x7) (λ x11 x12 . ∀ x13 . x13x7∀ x14 . x14x7x8 x13 x14x10 (ap x11 x13) (ap x12 x14))) x2 x3 y4 y5).
Apply L3 with y4, y5, x2, x3, λ x7 . x6.
Apply L1 with x2, x3, y4, y5, λ x7 . x6.
The subproof is completed by applying H4.
Let x6 of type ιιο be given.
Apply L4 with λ x7 . x6 x7 y5x6 y5 x7.
Assume H5: x6 y5 y5.
The subproof is completed by applying H5.