Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Assume H0: explicit_OrderedField x0 x1 x2 x3 x4 x5.
Assume H1: ∀ x6 . x6x0∀ x7 . x7x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∃ x8 . and (x8{x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}) (x5 x7 (x4 x8 x6)).
Assume H2: ∀ x6 . x6setexp x0 {x7 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x7}∀ x7 . x7setexp x0 {x8 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8}(∀ x8 . x8{x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8)))∃ x8 . and (x8x0) (∀ x9 . x9{x10 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10}and (x5 (ap x6 x9) x8) (x5 x8 (ap x7 x9))).
Apply and3I with explicit_OrderedField x0 x1 x2 x3 x4 x5, ∀ x6 . x6x0∀ x7 . x7x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∃ x8 . and (x8{x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}) (x5 x7 (x4 x8 x6)), ∀ x6 . ...∀ x7 . ...(∀ x8 . x8{x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 ... ... ...}and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8)))∃ x8 . and (x8x0) (∀ x9 . x9{x10 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10}and (x5 (ap x6 x9) x8) (x5 x8 (ap x7 x9))) leaving 3 subgoals.
...
...
...