Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Apply unknownprop_b456609235d152f08bccfce314d541d7c44f3716137c00b0ce21cf467ba83d17 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))), λ x8 . If_i (x8 = 4a7ef..) x0 (If_i (x8 = 4ae4a.. 4a7ef..) x1 (If_i (x8 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x8 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (x8 = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (If_i (x8 = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 (If_i (x8 = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) x6 x7)))))), 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))), λ x8 x9 . x9 = x5 leaving 2 subgoals.
The subproof is completed by applying unknownprop_7a5ad880710fd4a15ea3e25e8d9f0d84d14e57c19f354fdaeebd98d30ad1d2e4.
Apply If_i_0 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4a7ef.., x0, If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. 4a7ef..) x1 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) x6 x7))))), λ x8 x9 . x9 = x5 leaving 2 subgoals.
The subproof is completed by applying unknownprop_a28806a210b61567a3ab53c41670dd2cdd0954582f81581ebc35a00116effb38.
Apply If_i_0 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. 4a7ef.., x1, If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 (If_i (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) x6 x7)))), λ x8 x9 . x9 = x5 leaving 2 subgoals.
The subproof is completed by applying unknownprop_277d6d7121479b5a4376f24b0cde62a343397396992f54847fcdd9c228b6775f.
Apply If_i_0 with 4ae4a.. (4ae4a.. (4ae4a.. ...)) = ..., ..., ..., ... leaving 2 subgoals.
...
...