Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιι be given.
Let x6 of type ιιι be given.
Let x7 of type ιιι be given.
Let x8 of type ιο be given.
Let x9 of type ιο be given.
Assume H0: 94613.. x0 x2 x4 x6 x8 = 94613.. x1 x3 x5 x7 x9.
Claim L1: ...
...
Claim L2: ...
...
Apply and5I with x0 = x1, ∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11, ∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11, ∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 x10 x11 = x7 x10 x11, ∀ x10 . prim1 x10 x0x8 x10 = x9 x10 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Let x11 of type ι be given.
Assume H4: prim1 x11 x0.
Apply unknownprop_fc264994e9fe69947f39a2155e3b678222607a73685180f878ae6bee13d7c92e with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 . x13 = x3 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Claim L5: prim1 x10 x1
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Claim L6: prim1 x11 x1
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . e3162.. (f482f.. x13 (4ae4a.. 4a7ef..)) x10 x11 = x3 x10 x11.
Let x12 of type ιιο be given.
Apply unknownprop_fc264994e9fe69947f39a2155e3b678222607a73685180f878ae6bee13d7c92e with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Let x11 of type ι be given.
Assume H4: prim1 x11 x0.
Apply unknownprop_f06030f48dfa8b9a3ae3b2086298a361c60007f8d582114218ce4d0e9b3c2f15 with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 . x13 = x5 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Claim L5: prim1 x10 x1
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Claim L6: prim1 x11 x1
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . e3162.. (f482f.. x13 (4ae4a.. (4ae4a.. 4a7ef..))) x10 x11 = x5 x10 x11.
Let x12 of type ιιο be given.
Apply unknownprop_f06030f48dfa8b9a3ae3b2086298a361c60007f8d582114218ce4d0e9b3c2f15 with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Let x11 of type ι be given.
Assume H4: prim1 x11 x0.
Apply unknownprop_37557e7f0ffd09d385c71300094cf77a808eb546d116f78961140ab099ada3d4 with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 . x13 = x7 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Claim L5: prim1 x10 x1
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Claim L6: prim1 x11 x1
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . e3162.. (f482f.. x13 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x10 x11 = x7 x10 x11.
Let x12 of type ιιο be given.
Apply unknownprop_37557e7f0ffd09d385c71300094cf77a808eb546d116f78961140ab099ada3d4 with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Assume H3: prim1 ... ....
...