Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιιιιιι be given.
Assume H0: Church6_p x0.
Let x1 of type ιιιιιιι be given.
Assume H1: Church6_lt4p x1.
Apply H0 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 x2 x1 = permargs_i_2_3_0_1_4_5 x1 leaving 6 subgoals.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3) x2 = permargs_i_2_3_0_1_4_5 x2 leaving 4 subgoals.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3) (λ x3 x4 x5 x6 x7 x8 . x3)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3) (λ x3 x4 x5 x6 x7 x8 . x4)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3) (λ x3 x4 x5 x6 x7 x8 . x5)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3) (λ x3 x4 x5 x6 x7 x8 . x6)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6)).
The subproof is completed by applying H2.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4) x2 = permargs_i_2_3_0_1_4_5 x2 leaving 4 subgoals.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4) (λ x3 x4 x5 x6 x7 x8 . x3)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4) (λ x3 x4 x5 x6 x7 x8 . x4)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4) (λ x3 x4 x5 x6 x7 x8 . x5)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4) (λ x3 x4 x5 x6 x7 x8 . x6)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6)).
The subproof is completed by applying H2.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5) x2 = permargs_i_2_3_0_1_4_5 x2 leaving 4 subgoals.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5) (λ x3 x4 x5 x6 x7 x8 . x3)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5) (λ x3 x4 x5 x6 x7 x8 . x4)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5) (λ x3 x4 x5 x6 x7 x8 . x5)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5) (λ x3 x4 x5 x6 x7 x8 . x6)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6)).
The subproof is completed by applying H2.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6) x2 = permargs_i_2_3_0_1_4_5 x2 leaving 4 subgoals.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6) (λ x3 x4 x5 x6 x7 x8 . x3)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6) (λ x3 x4 x5 x6 x7 x8 . x4)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x4)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6) (λ x3 x4 x5 x6 x7 x8 . x5)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x5)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6) (λ x3 x4 x5 x6 x7 x8 . x6)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x6)).
The subproof is completed by applying H2.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x7) x2 = permargs_i_2_3_0_1_4_5 x2 leaving 4 subgoals.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H2: x2 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x7) (λ x3 x4 x5 x6 x7 x8 . x3)) (permargs_i_2_3_0_1_4_5 (λ x3 x4 x5 x6 x7 x8 . x3)).
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
...
...
...
...