Let x0 of type ι be given.
Let x1 of type ι → ι → ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ι → ι be given.
Let x7 of type ι → ι → ι be given.
Let x8 of type ι → ι → ι → ι be given.
Let x9 of type ι → ι → ι → ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι → ι be given.
Let x12 of type ι → ι → ι be given.
Let x13 of type ι → ι → ι be given.
Let x14 of type ο be given.
Assume H2:
∀ x15 . ... ⟶ ∀ x16 . ... ⟶ ∀ x17 . ... ⟶ ∀ x18 . ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ (∀ x19 . In ... ... ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x9 x19 x20 x21) x0) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x10 x19 x20 = x1 x19 (x1 x20 (x2 x19 x4))) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ In (x10 x19 x20) x0) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x12 x19 x20 = x1 (x2 x19 x20) (x2 (x2 x19 x4) x4)) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ In (x12 x19 x20) x0) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x11 x19 x20 = x1 (x1 (x3 x4 x19) x20) x19) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ In (x11 x19 x20) x0) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x13 x19 x20 = x1 (x3 x4 (x3 x4 x19)) (x3 x20 x19)) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ In (x13 x19 x20) x0) ⟶ (∀ x19 . In x19 x0 ⟶ x1 x4 x19 = x19) ⟶ (∀ x19 . In x19 x0 ⟶ x1 x19 x4 = x19) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x2 x19 (x1 x19 x20) = x20) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x1 x19 (x2 x19 x20) = x20) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x3 (x1 x19 x20) x20 = x19) ⟶ (∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x1 (x3 x19 x20) x20 = x19) ⟶ x14.