Search for blocks/addresses/...

Proofgold Proof

pf
Apply SNoLev_ind3 with λ x0 x1 x2 . mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2).
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Assume H0: SNo x0.
Assume H1: SNo x1.
Assume H2: SNo x2.
Assume H3: ∀ x3 . x3SNoS_ (SNoLev x0)mul_SNo (add_SNo x3 x1) x2 = add_SNo (mul_SNo x3 x2) (mul_SNo x1 x2).
Assume H4: ∀ x3 . x3SNoS_ (SNoLev x1)mul_SNo (add_SNo x0 x3) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x3 x2).
Assume H5: ∀ x3 . x3SNoS_ (SNoLev x2)mul_SNo (add_SNo x0 x1) x3 = add_SNo (mul_SNo x0 x3) (mul_SNo x1 x3).
Assume H6: ∀ x3 . x3SNoS_ (SNoLev x0)∀ x4 . x4SNoS_ (SNoLev x1)mul_SNo (add_SNo x3 x4) x2 = add_SNo (mul_SNo x3 x2) (mul_SNo x4 x2).
Assume H7: ∀ x3 . x3SNoS_ (SNoLev x0)∀ x4 . x4SNoS_ (SNoLev x2)mul_SNo (add_SNo x3 x1) x4 = add_SNo (mul_SNo x3 x4) (mul_SNo x1 x4).
Assume H8: ∀ x3 . x3SNoS_ (SNoLev x1)∀ x4 . x4SNoS_ (SNoLev x2)mul_SNo (add_SNo x0 x3) x4 = add_SNo (mul_SNo x0 x4) (mul_SNo x3 x4).
Assume H9: ∀ x3 . x3SNoS_ (SNoLev x0)∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x2)mul_SNo (add_SNo x3 x4) x5 = add_SNo (mul_SNo x3 x5) (mul_SNo x4 x5).
Apply mul_SNo_eq_3 with add_SNo x0 x1, x2, mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2) leaving 3 subgoals.
Apply SNo_add_SNo with x0, x1 leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H10: SNoCutP x3 x4.
Assume H11: ∀ x5 . ...∀ x6 : ο . (∀ x7 . ...∀ x8 . ...x5 = add_SNo (mul_SNo x7 x2) (add_SNo (mul_SNo (add_SNo x0 x1) x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR (add_SNo x0 x1)∀ x8 . x8SNoR x2x5 = add_SNo (mul_SNo x7 x2) (add_SNo (mul_SNo (add_SNo x0 x1) x8) (minus_SNo (mul_SNo x7 x8)))x6)x6.
...