Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
RealsStruct
x0
.
Let x1 of type
ο
be given.
Assume H1:
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x2
∈
RealsStruct_Z
x0
)
⟶
field4
x0
∈
RealsStruct_Z
x0
⟶
RealsStruct_Npos
x0
⊆
RealsStruct_Z
x0
⟶
RealsStruct_Z
x0
⊆
field0
x0
⟶
(
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
∀ x3 : ο .
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
∈
RealsStruct_Npos
x0
⟶
x3
)
⟶
(
x2
=
field4
x0
⟶
x3
)
⟶
(
x2
∈
RealsStruct_Npos
x0
⟶
x3
)
⟶
x3
)
⟶
RealsStruct_one
x0
∈
RealsStruct_Z
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
RealsStruct_one
x0
)
∈
RealsStruct_Z
x0
⟶
(
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x2
∈
RealsStruct_Z
x0
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Z
x0
⟶
field1b
x0
x2
x3
∈
RealsStruct_Z
x0
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Z
x0
⟶
field2b
x0
x2
x3
∈
RealsStruct_Z
x0
)
⟶
x1
.
Apply explicit_OrderedField_Z_props with
field0
x0
,
field4
x0
,
RealsStruct_one
x0
,
field1b
x0
,
field2b
x0
,
RealsStruct_leq
x0
,
x1
leaving 2 subgoals.
Apply explicit_OrderedField_of_RealsStruct with
x0
.
The subproof is completed by applying H0.
Apply unknownprop_87925c67a03b35d7e2b95672013636ce0205b3bb767f5d1c0c78f69cadaeb3e9 with
x0
,
λ x2 x3 .
(
∀ x4 .
x4
∈
RealsStruct_Npos
x0
⟶
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x4
∈
x2
)
⟶
field4
x0
∈
x2
⟶
RealsStruct_Npos
x0
⊆
x2
⟶
x2
⊆
field0
x0
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 : ο .
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x4
∈
RealsStruct_Npos
x0
⟶
x5
)
⟶
(
x4
=
field4
x0
⟶
x5
)
⟶
(
x4
∈
RealsStruct_Npos
x0
⟶
x5
)
⟶
x5
)
⟶
RealsStruct_one
x0
∈
x2
⟶
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_one
x0
)
∈
x2
⟶
(
∀ x4 .
x4
∈
x2
⟶
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x4
∈
x2
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
field1b
x0
x4
x5
∈
x2
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
field2b
x0
x4
x5
∈
x2
)
⟶
x1
leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H2:
∀ x2 .
...
⟶
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
...
...
∈
...
.
...
■