Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: RealsStruct x0.
Let x1 of type ο be given.
Assume H1: (∀ x2 . x2RealsStruct_Npos x0Field_minus (Field_of_RealsStruct x0) x2RealsStruct_Z x0)field4 x0RealsStruct_Z x0RealsStruct_Npos x0RealsStruct_Z x0RealsStruct_Z x0field0 x0(∀ x2 . x2RealsStruct_Z x0∀ x3 : ο . (Field_minus (Field_of_RealsStruct x0) x2RealsStruct_Npos x0x3)(x2 = field4 x0x3)(x2RealsStruct_Npos x0x3)x3)RealsStruct_one x0RealsStruct_Z x0Field_minus (Field_of_RealsStruct x0) (RealsStruct_one x0)RealsStruct_Z x0(∀ x2 . x2RealsStruct_Z x0Field_minus (Field_of_RealsStruct x0) x2RealsStruct_Z x0)(∀ x2 . x2RealsStruct_Z x0∀ x3 . x3RealsStruct_Z x0field1b x0 x2 x3RealsStruct_Z x0)(∀ x2 . x2RealsStruct_Z x0∀ x3 . x3RealsStruct_Z x0field2b x0 x2 x3RealsStruct_Z x0)x1.
Apply explicit_OrderedField_Z_props with field0 x0, field4 x0, RealsStruct_one x0, field1b x0, field2b x0, RealsStruct_leq x0, x1 leaving 2 subgoals.
Apply explicit_OrderedField_of_RealsStruct with x0.
The subproof is completed by applying H0.
Apply unknownprop_87925c67a03b35d7e2b95672013636ce0205b3bb767f5d1c0c78f69cadaeb3e9 with x0, λ x2 x3 . (∀ x4 . x4RealsStruct_Npos x0explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x4x2)field4 x0x2RealsStruct_Npos x0x2x2field0 x0(∀ x4 . x4x2∀ x5 : ο . (explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x4RealsStruct_Npos x0x5)(x4 = field4 x0x5)(x4RealsStruct_Npos x0x5)x5)RealsStruct_one x0x2explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_one x0)x2(∀ x4 . x4x2explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x4x2)(∀ x4 . x4x2∀ x5 . x5x2field1b x0 x4 x5x2)(∀ x4 . x4x2∀ x5 . x5x2field2b x0 x4 x5x2)x1 leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H2: ∀ x2 . ...explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) ... .......
...