Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type (ιο) → ο be given.
Let x2 of type (ιο) → ο be given.
Let x3 of type ιιο be given.
Let x4 of type ιιο be given.
Let x5 of type ι be given.
Assume H0: ∀ x6 : ι → ο . (∀ x7 . x6 x7x7x0)iff (x1 x6) (x2 x6).
Assume H1: ∀ x6 . x6x0∀ x7 . x7x0iff (x3 x6 x7) (x4 x6 x7).
Claim L2: encode_c x0 x1 = encode_c x0 x2
Apply encode_c_ext with x0, x1, x2.
The subproof is completed by applying H0.
Apply L2 with λ x6 x7 . lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_c x0 x1) (If_i (x8 = 2) (encode_r x0 x3) x5))) = lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) x6 (If_i (x8 = 2) (encode_r x0 x4) x5))).
Claim L3: encode_r x0 x3 = encode_r x0 x4
Apply encode_r_ext with x0, x3, x4.
The subproof is completed by applying H1.
Apply L3 with λ x6 x7 . lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_c x0 x1) (If_i (x8 = 2) (encode_r x0 x3) x5))) = lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_c x0 x1) (If_i (x8 = 2) x6 x5))).
Let x6 of type ιιο be given.
Assume H4: x6 (lam 4 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) (encode_c x0 x1) (If_i (x7 = 2) (encode_r x0 x3) x5)))) (lam 4 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) (encode_c x0 x1) (If_i (x7 = 2) (encode_r x0 x3) x5)))).
The subproof is completed by applying H4.