Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: RealsStruct x0.
Let x1 of type ο be given.
Assume H1: RealsStruct_Q x0field0 x0(∀ x2 . x2RealsStruct_Q x0∀ x3 : ο . (x2field0 x0∀ x4 . x4RealsStruct_Z x0∀ x5 . x5RealsStruct_Npos x0field2b x0 x5 x2 = x4x3)x3)(∀ x2 . x2field0 x0∀ x3 . x3RealsStruct_Z x0∀ x4 . x4RealsStruct_Npos x0field2b x0 x4 x2 = x3x2RealsStruct_Q x0)x1.
Apply explicit_OrderedField_Q_props with field0 x0, field4 x0, RealsStruct_one x0, field1b x0, field2b x0, RealsStruct_leq x0, x1 leaving 2 subgoals.
Apply explicit_OrderedField_of_RealsStruct with x0.
The subproof is completed by applying H0.
Apply unknownprop_61f0c5d21af7f4f8b3f1e5a3770aff1383293d12248b741378bc8934dec531c5 with x0, λ x2 x3 . x2field0 x0(∀ x4 . x4x2∀ x5 : ο . (x4field0 x0∀ x6 . x6{x7 ∈ field0 x0|or (or (explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x7RealsStruct_Npos x0) (x7 = field4 x0)) (x7RealsStruct_Npos x0)}∀ x7 . x7RealsStruct_Npos x0field2b x0 x7 x4 = x6x5)x5)(∀ x4 . x4field0 x0∀ x5 . x5{x6 ∈ field0 x0|or (or (explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x6RealsStruct_Npos x0) (x6 = field4 x0)) (x6RealsStruct_Npos x0)}∀ x6 . x6RealsStruct_Npos x0field2b x0 x6 x4 = x5x4x2)x1 leaving 2 subgoals.
The subproof is completed by applying H0.
Apply unknownprop_87925c67a03b35d7e2b95672013636ce0205b3bb767f5d1c0c78f69cadaeb3e9 with x0, λ x2 x3 . RealsStruct_Q x0field0 x0(∀ x4 . x4RealsStruct_Q x0∀ x5 : ο . (x4field0 x0∀ x6 . x6x2∀ x7 . x7RealsStruct_Npos x0field2b x0 x7 x4 = x6x5)x5)(∀ x4 . x4field0 x0∀ x5 . x5x2∀ x6 . x6RealsStruct_Npos x0field2b x0 x6 x4 = x5x4RealsStruct_Q x0)x1 leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.