Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι(ιο) → ο be given.
Let x1 of type ι be given.
Assume H0: ordinal x1.
Let x2 of type ιο be given.
Let x3 of type ι be given.
Assume H1: prim1 x3 x1.
Apply H0 with dafc2.. x0 x1 x2dafc2.. x0 x3 x2.
Assume H2: TransSet x1.
Assume H3: ∀ x4 . prim1 x4 x1TransSet x4.
Claim L4: ordinal x3
Apply ordinal_Hered with x1, x3 leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Claim L5: TransSet x3
Apply L4 with TransSet x3.
Assume H5: TransSet x3.
Assume H6: ∀ x4 . prim1 x4 x3TransSet x4.
The subproof is completed by applying H5.
Assume H6: ∀ x4 . prim1 x4 x1∀ x5 : ι → ο . 610d8.. x0 x4 x540dde.. x1 x2 x4 x5.
Let x4 of type ι be given.
Assume H7: prim1 x4 x3.
Let x5 of type ιο be given.
Assume H8: 610d8.. x0 x4 x5.
Claim L9: prim1 x4 x1
Apply H2 with x3, x4 leaving 2 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H7.
Claim L10: 40dde.. x1 x2 x4 x5
Apply H6 with x4, x5 leaving 2 subgoals.
The subproof is completed by applying L9.
The subproof is completed by applying H8.
Apply unknownprop_1c12738cd89f8c615a541c15b6797bba2a5be97ab5e514c9fd76b3fef06e2aa9 with x1, x4, x2, x5, 40dde.. x3 x2 x4 x5 leaving 4 subgoals.
The subproof is completed by applying L10.
Assume H11: PNoLt_ (d3786.. x1 x4) x2 x5.
Claim L12: d3786.. x1 x4 = x4
Apply unknownprop_c3bea5de1408165b06631f86b9f132e6a4154b60456b567e9159f0db1e9656af with x1, x4, λ x6 x7 . x7 = x4.
Apply unknownprop_71c983f9883b4f28b7b9554926463bb4627a33e675a17eaba24400b257e59781 with x4, x1.
Apply H2 with x4.
The subproof is completed by applying L9.
Claim L13: d3786.. x3 x4 = x4
Apply unknownprop_c3bea5de1408165b06631f86b9f132e6a4154b60456b567e9159f0db1e9656af with x3, x4, λ x6 x7 . x7 = x4.
Apply unknownprop_71c983f9883b4f28b7b9554926463bb4627a33e675a17eaba24400b257e59781 with x4, x3.
Apply L5 with x4.
The subproof is completed by applying H7.
Apply unknownprop_ac970f51deca19d20e9a8350c3518ea802533ebd2768fe799c9b97ea3dd03596 with x3, x4, x2, x5.
Apply L13 with λ x6 x7 . PNoLt_ x7 x2 x5.
Apply L12 with λ x6 x7 . PNoLt_ x6 x2 x5.
The subproof is completed by applying H11.
Assume H11: prim1 x1 x4.
Apply FalseE with PNoEq_ x1 x2 x5x5 x140dde.. x3 x2 x4 x5.
Apply unknownprop_f1a526a64fd91875cd825eea7f2e7776b7f0e7be5dcee74dc03af1d7886d1eb6 with x1, x4 leaving 2 subgoals.
The subproof is completed by applying H11.
The subproof is completed by applying L9.
Assume H11: prim1 x4 x1.
Assume H12: PNoEq_ x4 x2 x5.
Assume H13: not (x2 x4).
Apply unknownprop_b51c738b3a14385af55eef02a445728dc056a37996fdc42e5ede8e064af23c97 with x3, x4, x2, x5 leaving 3 subgoals.
The subproof is completed by applying H7.
The subproof is completed by applying H12.
The subproof is completed by applying H13.