Let x0 of type ι be given.
Let x1 of type ι be given.
Apply H0 with
∃ x2 : ι → ι . bij x0 x1 x2.
Let x2 of type ι be given.
Apply H1 with
∃ x3 : ι → ι . bij x0 x1 x3.
Apply H2 with
(∀ x3 x4 x5 x6 . prim1 (7ee77.. x3 x4) x2 ⟶ prim1 (7ee77.. x5 x6) x2 ⟶ iff (x3 = x5) (x4 = x6)) ⟶ ∃ x3 : ι → ι . bij x0 x1 x3.
Let x3 of type ο be given.
Assume H9:
∀ x4 : ι → ι . and (and (∀ x5 . prim1 x5 x0 ⟶ prim1 (x4 x5) x1) (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x4 x5 = x4 x6 ⟶ x5 = x6)) (∀ x5 . prim1 x5 x1 ⟶ ∃ x6 . and (prim1 x6 x0) (x4 x6 = x5)) ⟶ x3.