Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
RealsStruct
x0
.
Apply RealsStruct_Z_props with
x0
,
RealsStruct_Npos
x0
⊆
RealsStruct_Z
x0
leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H1:
∀ x1 .
x1
∈
RealsStruct_Npos
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Z
x0
.
Assume H2:
field4
x0
∈
RealsStruct_Z
x0
.
Assume H3:
RealsStruct_Npos
x0
⊆
RealsStruct_Z
x0
.
Assume H4:
RealsStruct_Z
x0
⊆
field0
x0
.
Assume H5:
∀ x1 .
x1
∈
RealsStruct_Z
x0
⟶
∀ x2 : ο .
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Npos
x0
⟶
x2
)
⟶
(
x1
=
field4
x0
⟶
x2
)
⟶
(
x1
∈
RealsStruct_Npos
x0
⟶
x2
)
⟶
x2
.
Assume H6:
RealsStruct_one
x0
∈
RealsStruct_Z
x0
.
Assume H7:
Field_minus
(
Field_of_RealsStruct
x0
)
(
RealsStruct_one
x0
)
∈
RealsStruct_Z
x0
.
Assume H8:
∀ x1 .
x1
∈
RealsStruct_Z
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Z
x0
.
Assume H9:
∀ x1 .
x1
∈
RealsStruct_Z
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
field1b
x0
x1
x2
∈
RealsStruct_Z
x0
.
Assume H10:
∀ x1 .
x1
∈
RealsStruct_Z
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
field2b
x0
x1
x2
∈
RealsStruct_Z
x0
.
The subproof is completed by applying H3.
■