Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Let x7 of type ι be given.
Assume H0: ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 x8 x9 = x6 x10 x11and (x8 = x10) (x9 = x11).
Assume H1: ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim1 (x3 x8 x9) x0.
Assume H2: ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x3 x8 x9 = x3 x9 x8.
Assume H3: prim1 x1 x0.
Assume H4: ∀ x8 . prim1 x8 x0x3 x1 x8 = x8.
Assume H5: ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim1 (x4 x8 x9) x0.
Assume H6: ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x8 x9 = x4 x9 x8.
Assume H7: prim1 x2 x0.
Assume H8: ∀ x8 . prim1 x8 x0x4 x2 x8 = x8.
Assume H9: prim1 (explicit_Field_minus x0 x1 x2 x3 x4 x2) x0.
Assume H10: ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim1 (x6 x8 x9) x7.
Assume H11: ∀ x8 . prim1 x8 x7∀ x9 : ι → ο . (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x8 = x6 x10 x11x9 (x6 x10 x11))x9 x8.
Assume H12: ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0(λ x10 . prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x10 = x6 x11 x12)))) (x6 x8 x9) = x8.
Assume H13: ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0(λ x10 . prim0 (λ x11 . and (prim1 x11 x0) (x10 = x6 ((λ x12 . prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x12 = x6 x13 x14)))) x10) x11))) (x6 x8 x9) = x9.
Assume H14: ∀ x8 . ...prim1 (x6 x8 x1) (1216a.. x7 (λ x9 . (λ x10 . x6 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 ... ...) ...))) ...) ...) ... = ...)).
...