Let x0 of type ι be given.
Let x1 of type ι → ι → ο be given.
Assume H0: ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2.
Let x2 of type ι be given.
Assume H1: x2 ∈ x0.
Let x3 of type ι be given.
Assume H2: x3 ∈ x0.
Let x4 of type ι be given.
Assume H3: x4 ∈ x0.
Let x5 of type ι be given.
Assume H4: x5 ∈ x0.
Let x6 of type ι be given.
Assume H5: x6 ∈ x0.
Let x7 of type ι be given.
Assume H6: x7 ∈ x0.
Let x8 of type ι be given.
Assume H7: x8 ∈ x0.
Let x9 of type ι be given.
Assume H8: x9 ∈ x0.
Assume H9:
29a16.. x1 x2 x3 x4 x5 x6 x7 x8 x9.
Apply unknownprop_14d967b4292c87ec7656c85d95dfbe3252a2ee053c1f9dcef816fdce9d027f74 with
x0,
x1,
x2,
x3,
x4,
x5,
x6,
x8,
x7,
x9 leaving 10 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
The subproof is completed by applying H7.
The subproof is completed by applying H6.
The subproof is completed by applying H8.
Apply unknownprop_0446f900cf614e2c49c227c97b592efbe7160087dcd8a428905c6dee2b5f5552 with
x0,
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 leaving 10 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
The subproof is completed by applying H6.
The subproof is completed by applying H7.
The subproof is completed by applying H8.
The subproof is completed by applying H9.