Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: RealsStruct x0.
Let x1 of type ι be given.
Assume H1: x1field0 x0.
Apply Field_of_RealsStruct_0 with x0, λ x2 x3 . If_i (x1x3) (explicit_Field_minus x3 (ap (Field_of_RealsStruct x0) 3) (ap (Field_of_RealsStruct x0) 4) (decode_b (ap (Field_of_RealsStruct x0) 1)) (decode_b (ap (Field_of_RealsStruct x0) 2)) x1) 0 = explicit_Field_minus (field0 x0) (ap (Field_of_RealsStruct x0) 3) (ap (Field_of_RealsStruct x0) 4) (decode_b (ap (Field_of_RealsStruct x0) 1)) (decode_b (ap (Field_of_RealsStruct x0) 2)) x1.
Apply If_i_1 with x1field0 x0, explicit_Field_minus (field0 x0) (ap (Field_of_RealsStruct x0) 3) (ap (Field_of_RealsStruct x0) 4) (decode_b (ap (Field_of_RealsStruct x0) 1)) (decode_b (ap (Field_of_RealsStruct x0) 2)) x1, 0.
The subproof is completed by applying H1.