Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Assume H0: ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0.
Assume H1: ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7.
Assume H2: ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = x3 x6 x5.
Assume H3: x1 ∈ x0.
Assume H4: ∀ x5 . x5 ∈ x0 ⟶ x3 x1 x5 = x5.
Assume H5:
∀ x5 . x5 ∈ x0 ⟶ ∃ x6 . and (x6 ∈ x0) (x3 x5 x6 = x1).
Assume H6: ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 ∈ x0.
Assume H7: ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7.
Assume H8: ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 = x4 x6 x5.
Assume H9: x2 ∈ x0.
Assume H10: x2 = x1 ⟶ ∀ x5 : ο . x5.
Assume H11: ∀ x5 . x5 ∈ x0 ⟶ x4 x2 x5 = x5.
Assume H12: ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7).
Apply and7I with
and (and (and (and (and (and (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = x3 x6 x5)) (x1 ∈ x0)) (∀ x5 . x5 ∈ x0 ⟶ x3 x1 x5 = x5)) (∀ x5 . x5 ∈ x0 ⟶ ∃ x6 . and (x6 ∈ x0) (x3 x5 x6 = x1))) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 ∈ x0),
∀ x5 . ... ⟶ ∀ x6 . ... ⟶ ∀ x7 . ...,
...,
...,
...,
...,
... leaving 7 subgoals.