Let x0 of type ι → ο be given.
Let x1 of type ι → ο be given.
Apply unknownprop_a136f966a5f32c42970eaa74da643e650a33010b04dec952965730ae1dedc69c with
λ x2 . or (or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1)) (PNoLt_ x2 x1 x0).
Let x2 of type ι be given.
Apply unknownprop_b257b354d80b58d9a8444b167a21f47b4aabc910dc3698404491d5ef01e18cf3 with
PNoEq_ x2 x0 x1,
or (or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1)) (PNoLt_ x2 x1 x0) leaving 2 subgoals.
Apply unknownprop_7c688f24c3595bc4b513e911d7f551c8ccfedc804a6c15c02d25d01a2996aec6 with
or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1),
PNoLt_ x2 x1 x0.
Apply unknownprop_c29620ea10188dd8ed7659bc2875dc8e08f16ffd29713f8ee3146f02f9828ceb with
PNoLt_ x2 x0 x1,
PNoEq_ x2 x0 x1.
The subproof is completed by applying H2.
Apply unknownprop_ee0b4b64aba8e6af97035d72b359ab8e1ae1e5e06024c58477c9410cad648356 with
λ x3 x4 : ι → (ι → ο) → (ι → ο) → ο . not (x4 x2 x0 x1) ⟶ or (or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1)) (PNoLt_ x2 x1 x0).
Assume H2:
not ((λ x3 . λ x4 x5 : ι → ο . ∀ x6 . In x6 x3 ⟶ iff (x4 x6) (x5 x6)) x2 x0 x1).
Apply L3 with
or (or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1)) (PNoLt_ x2 x1 x0).
Let x3 of type ι be given.
Assume H4:
not (In x3 x2 ⟶ iff (x0 x3) (x1 x3)).
Apply andE with
In x3 x2,
not (iff (x0 x3) (x1 x3)),
or (or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1)) (PNoLt_ x2 x1 x0) leaving 2 subgoals.
The subproof is completed by applying L5.
Assume H7:
not (iff (x0 x3) (x1 x3)).
Apply unknownprop_ca18603a3bd7d3baee9f63f87aac7064ee948e21e70ee2e74fd135602574a894 with
PNoLt_ x3 x0 x1,
PNoEq_ x3 x0 x1,
PNoLt_ x3 x1 x0,
or (or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1)) (PNoLt_ x2 x1 x0) leaving 4 subgoals.
Apply H1 with
x3.
The subproof is completed by applying H6.
Apply unknownprop_7c688f24c3595bc4b513e911d7f551c8ccfedc804a6c15c02d25d01a2996aec6 with
or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1),
PNoLt_ x2 x1 x0.
Apply unknownprop_7c688f24c3595bc4b513e911d7f551c8ccfedc804a6c15c02d25d01a2996aec6 with
PNoLt_ x2 x0 x1,
PNoEq_ x2 x0 x1.
Apply unknownprop_6df6296e43f9bca3c044b15e64641a9a31579aac9d81b18192c24adabec23296 with
x0,
x1,
x2,
x3 leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H6.
The subproof is completed by applying H8.
Apply unknownprop_b257b354d80b58d9a8444b167a21f47b4aabc910dc3698404491d5ef01e18cf3 with
x0 x3,
or (or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1)) (PNoLt_ x2 x1 x0) leaving 2 subgoals.