Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Let x0 of type ιιιιιιιιιιιιιι be given.
Let x1 of type ιιιιιιιιιιιιιι be given.
Let x2 of type ιιιιιιιιιιιιιι be given.
Assume H1: Church13_p x0.
Assume H2: Church13_p x1.
Assume H3: Church13_p x2.
Apply H1 with λ x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6)∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x3∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x1∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x2∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6) = x3∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6) = x1∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6) = x2∀ x4 : ο . x4)(x3 = x1∀ x4 : ο . x4)(x3 = x2∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6) = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x3 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x1 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x2 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6) x3 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6) x1 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6) x2 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 x3 x1 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 x3 x2 = λ x4 x5 . x5)(TwoRamseyGraph_3_5_Church13 x1 x2 = λ x4 x5 . x5)False leaving 13 subgoals.
Assume H4: ((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) = λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x5)∀ x3 : ο . x3.
Assume H5: ((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) = λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3)∀ x3 : ο . x3.
Apply FalseE with (...∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) = x2∀ x3 : ο . x3)(((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x5) = λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3)∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x5) = x1∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x5) = x2∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) = x1∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x5) = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) x1 = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) x2 = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x5) (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x5) x1 = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x5) x2 = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) x1 = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x3) x2 = λ x3 x4 . x4)(TwoRamseyGraph_3_5_Church13 x1 x2 = λ x3 x4 . x4)False.
...
...
...
...
...
...
...
...
...
...
...
...
...