Search for blocks/addresses/...

Proofgold Proof

pf
Assume H0: ∀ x0 . prime_nat x0odd_nat x0∃ x1 . and (x1setminus x0 (Sing 0)) (∃ x2 . and (x2omega) (∃ x3 . and (x3omega) (∃ x4 . and (x4omega) (∃ x5 . and (x5omega) (mul_SNo x1 x0 = add_SNo ((λ x6 . mul_SNo x6 x6) x2) (add_SNo ((λ x6 . mul_SNo x6 x6) x3) (add_SNo ((λ x6 . mul_SNo x6 x6) x4) ((λ x6 . mul_SNo x6 x6) x5)))))))).
Assume H1: ∀ x0 . nat_p x0∀ x1 . x1omega∀ x2 . x2omega∀ x3 . x3omega∀ x4 . x4omegamul_SNo 2 x0 = add_SNo ((λ x5 . mul_SNo x5 x5) x1) (add_SNo ((λ x5 . mul_SNo x5 x5) x2) (add_SNo ((λ x5 . mul_SNo x5 x5) x3) ((λ x5 . mul_SNo x5 x5) x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9)))x5)x5.
Let x0 of type ι be given.
Assume H2: prime_nat x0.
Assume H3: odd_nat x0.
Apply H3 with ∃ x1 . and (x1omega) (∃ x2 . and (x2omega) (∃ x3 . and (x3omega) (∃ x4 . and (x4omega) (x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4))))))).
Assume H4: x0omega.
Assume H5: ∀ x1 . x1omegax0 = mul_nat 2 x1∀ x2 : ο . x2.
Apply dneg with ∃ x1 . and (x1omega) (∃ x2 . and (x2omega) (∃ x3 . and (x3omega) (∃ x4 . and (x4omega) (x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4))))))).
Assume H6: not (∃ x1 . and (x1omega) (∃ x2 . and (x2omega) (∃ x3 . and (x3omega) (∃ x4 . and (x4omega) (x0 = ...))))).
...