Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: x0u24.
Assume H1: atleastp u5 x0.
Assume H2: ∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_4_5_24 x1 x2).
Apply unknownprop_611d05f3c0e0aff033700ccf72b7ceaf4160dd0bd5dde16fbd4a43684d4061b2 with x0, False leaving 2 subgoals.
The subproof is completed by applying H1.
Let x1 of type ι be given.
Assume H3: x1x0.
Let x2 of type ι be given.
Assume H4: x2x0.
Let x3 of type ι be given.
Assume H5: x3x0.
Let x4 of type ι be given.
Assume H6: x4x0.
Let x5 of type ι be given.
Assume H7: x5x0.
Assume H8: x1 = x2∀ x6 : ο . x6.
Assume H9: x1 = x3∀ x6 : ο . x6.
Assume H10: x1 = x4∀ x6 : ο . x6.
Assume H11: x1 = x5∀ x6 : ο . x6.
Assume H12: x2 = x3∀ x6 : ο . x6.
Assume H13: x2 = x4∀ x6 : ο . x6.
Assume H14: x2 = x5∀ x6 : ο . x6.
Assume H15: x3 = x4∀ x6 : ο . x6.
Assume H16: x3 = x5∀ x6 : ο . x6.
Assume H17: x4 = x5∀ x6 : ο . x6.
Claim L18: ...
...
Claim L19: ...
...
Claim L20: ...
...
Claim L21: ...
...
Claim L22: ...
...
Claim L23: ...
...
Claim L24: ...
...
Claim L25: ...
...
Claim L26: ...
...
Claim L27: ...
...
Apply unknownprop_71f021c030b388b031b0cb54393cd4b453c65667caa2e250dac00458eefad39c with x1, False leaving 2 subgoals.
Apply H0 with x1.
The subproof is completed by applying H3.
Let x6 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x7 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Assume H28: ChurchNum_3ary_proj_p x6.
Assume H29: ChurchNum_8ary_proj_p x7.
Assume H30: x1 = x6 (λ x8 : ι → ι . λ x9 . x9) (λ x8 : ι → ι . λ x9 . x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 x9)))))))) (λ x8 : ι → ι . λ x9 . x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 (x8 x9)))))))))))))))) ordsucc (x7 (λ x8 : ι → ι . λ x9 . x9) (λ x8 : ι → ι . x8) (λ x8 : ι → ι . λ x9 . x8 (x8 x9)) (λ x8 : ι → ι . λ x9 . x8 (x8 (x8 x9))) (λ x8 : ι → ι . λ x9 . x8 (x8 (x8 (x8 x9)))) (λ x8 : ι → ι . λ x9 . x8 (x8 (x8 (x8 (x8 x9))))) (λ x8 : ι → ι . λ x9 . x8 (x8 (x8 (x8 (x8 (x8 x9)))))) (λ x8 : ι → ι . λ x9 . x8 (x8 (x8 (x8 (x8 (x8 (x8 x9))))))) ordsucc 0).
Apply unknownprop_71f021c030b388b031b0cb54393cd4b453c65667caa2e250dac00458eefad39c with x2, False leaving 2 subgoals.
Apply H0 with x2.
The subproof is completed by applying H4.
Let x8 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x9 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Assume H31: ChurchNum_3ary_proj_p x8.
Assume H32: ChurchNum_8ary_proj_p x9.
Assume H33: x2 = x8 (λ x10 : ι → ι . λ x11 . x11) (λ x10 : ι → ι . λ x11 . x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 x11)))))))) (λ x10 : ι → ι . λ x11 . x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 (x10 x11)))))))))))))))) ordsucc (x9 (λ x10 : ι → ι . λ x11 . x11) (λ x10 : ι → ι . x10) (λ x10 : ι → ι . λ x11 . x10 (x10 x11)) (λ x10 : ι → ι . λ x11 . x10 ...) ... ... ... ... ... 0).
...