Let x0 of type ι be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Apply H0 with
λ x5 . x5 = 726e4.. x0 x1 x2 x3 x4 ⟶ prim1 x3 x0 leaving 2 subgoals.
Let x5 of type ι be given.
Let x6 of type ι → ι be given.
Assume H1:
∀ x7 . prim1 x7 x5 ⟶ prim1 (x6 x7) x5.
Let x7 of type ι → ο be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Apply unknownprop_2fe36533018e189844c5de2b6d5f0e4e362a125ae417916f82888e946a69aef7 with
x5,
x0,
x6,
x1,
x7,
x2,
x8,
x3,
x9,
x4,
prim1 x3 x0 leaving 2 subgoals.
The subproof is completed by applying H4.
Assume H5:
and (and (and (x5 = x0) (∀ x10 . prim1 x10 x5 ⟶ x6 x10 = x1 x10)) (∀ x10 . prim1 x10 x5 ⟶ x7 x10 = x2 x10)) (x8 = x3).
Apply H5 with
x9 = x4 ⟶ prim1 x3 x0.
Assume H6:
and (and (x5 = x0) (∀ x10 . prim1 x10 x5 ⟶ x6 x10 = x1 x10)) (∀ x10 . prim1 x10 x5 ⟶ x7 x10 = x2 x10).
Apply H6 with
x8 = x3 ⟶ x9 = x4 ⟶ prim1 x3 x0.
Assume H7:
and (x5 = x0) (∀ x10 . prim1 x10 x5 ⟶ x6 x10 = x1 x10).
Apply H7 with
(∀ x10 . prim1 x10 x5 ⟶ x7 x10 = x2 x10) ⟶ x8 = x3 ⟶ x9 = x4 ⟶ prim1 x3 x0.
Assume H8: x5 = x0.
Assume H9:
∀ x10 . prim1 x10 x5 ⟶ x6 x10 = x1 x10.
Assume H10:
∀ x10 . prim1 x10 x5 ⟶ x7 x10 = x2 x10.
Assume H11: x8 = x3.
Assume H12: x9 = x4.
Apply H8 with
λ x10 x11 . prim1 x3 x10.
Apply H11 with
λ x10 x11 . prim1 x10 x5.
The subproof is completed by applying H2.
Let x5 of type ι → ι → ο be given.
The subproof is completed by applying H1.