Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ((ι((ιι) → ιι) → (ιι) → ι) → (((ιι) → ι) → (ιι) → ιι) → ι) → ((((ιι) → ι) → ιι) → ι) → (((ιι) → ι) → ιι) → ((ιι) → ιι) → ι be given.
Let x1 of type (ιιιι) → ιι be given.
Let x2 of type (ιι) → ι(((ιι) → ι) → (ιι) → ι) → ιιιι be given.
Let x3 of type (((ιι) → ((ιι) → ι) → ι) → ι) → ((ιι) → ι) → ι be given.
Assume H0: ∀ x4 : ι → (ι → ι)ι → ι → ι . ∀ x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 . x3 (λ x8 : (ι → ι)((ι → ι) → ι) → ι . 0) (λ x8 : ι → ι . setsum (x1 (λ x9 x10 x11 . x8 (x2 (λ x12 . 0) 0 (λ x12 : (ι → ι) → ι . λ x13 : ι → ι . 0) 0 0 0)) (Inj1 0)) (setsum 0 (x8 (setsum 0 0)))) = x7.
Apply FalseE with ...............(∀ x4 : ι → ι → (ι → ι)ι → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι)ι → ι) → ι . ∀ x7 . x0 (λ x8 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x9 : ((ι → ι) → ι)(ι → ι)ι → ι . 0) (λ x8 : ((ι → ι) → ι)ι → ι . 0) (λ x8 : (ι → ι) → ι . λ x9 . x2 (λ x10 . x10) x7 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . x9) 0 (setsum 0 (x1 (λ x10 x11 x12 . x9) (x0 (λ x10 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x11 : ((ι → ι) → ι)(ι → ι)ι → ι . 0) (λ x10 : ((ι → ι) → ι)ι → ι . 0) (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 : ι → ι . λ x11 . 0)))) 0) (λ x8 : ι → ι . λ x9 . 0) = x2 (λ x8 . Inj0 x8) (x0 (λ x8 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x9 : ((ι → ι) → ι)(ι → ι)ι → ι . Inj0 0) (λ x8 : ((ι → ι) → ι)ι → ι . x3 (λ x9 : (ι → ι)((ι → ι) → ι) → ι . x8 (λ x10 : ι → ι . Inj0 0) 0) (λ x9 : ι → ι . x6 x7 (λ x10 : ι → ι . λ x11 . setsum 0 0))) (λ x8 : (ι → ι) → ι . λ x9 . x1 (λ x10 x11 x12 . 0) (x0 (λ x10 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x11 : ((ι → ι) → ι)(ι → ι)ι → ι . x10 0 (λ x12 : ι → ι . λ x13 . 0) (λ x12 . 0)) (λ x10 : ((ι → ι) → ι)ι → ι . Inj1 0) (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 : ι → ι . λ x11 . setsum 0 0))) (λ x8 : ι → ι . λ x9 . x8 x9)) (λ x8 : (ι → ι) → ι . λ x9 : ι → ι . x0 (λ x10 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x11 : ((ι → ι) → ι)(ι → ι)ι → ι . setsum (x1 (λ x12 x13 x14 . x12) 0) (x1 (λ x12 x13 x14 . x1 (λ x15 x16 x17 . 0) 0) (x1 (λ x12 x13 x14 . 0) 0))) (λ x10 : ((ι → ι) → ι)ι → ι . x7) (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 : ι → ι . λ x11 . setsum 0 (x10 0))) (Inj1 0) (x0 (λ x8 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x9 : ((ι → ι) → ι)(ι → ι)ι → ι . x9 (λ x10 : ι → ι . ...) ... ...) ... ... ...) ...)(∀ x4 : ι → ι . ∀ x5 : (ι → ι → ι) → ι . ∀ x6 x7 . x0 (λ x8 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x9 : ((ι → ι) → ι)(ι → ι)ι → ι . 0) (λ x8 : ((ι → ι) → ι)ι → ι . x7) (λ x8 : (ι → ι) → ι . λ x9 . x0 (λ x10 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x11 : ((ι → ι) → ι)(ι → ι)ι → ι . 0) (λ x10 : ((ι → ι) → ι)ι → ι . x9) (λ x10 : (ι → ι) → ι . λ x11 . 0) (λ x10 : ι → ι . λ x11 . x11)) (λ x8 : ι → ι . λ x9 . x3 (λ x10 : (ι → ι)((ι → ι) → ι) → ι . x0 (λ x11 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x12 : ((ι → ι) → ι)(ι → ι)ι → ι . 0) (λ x11 : ((ι → ι) → ι)ι → ι . 0) (λ x11 : (ι → ι) → ι . λ x12 . x3 (λ x13 : (ι → ι)((ι → ι) → ι) → ι . x12) (λ x13 : ι → ι . x3 (λ x14 : (ι → ι)((ι → ι) → ι) → ι . 0) (λ x14 : ι → ι . 0))) (λ x11 : ι → ι . λ x12 . Inj0 (x11 0))) (λ x10 : ι → ι . x3 (λ x11 : (ι → ι)((ι → ι) → ι) → ι . 0) (λ x11 : ι → ι . setsum 0 (Inj0 0)))) = x0 (λ x8 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . λ x9 : ((ι → ι) → ι)(ι → ι)ι → ι . x7) (λ x8 : ((ι → ι) → ι)ι → ι . Inj1 (Inj0 (x3 (λ x9 : (ι → ι)((ι → ι) → ι) → ι . Inj0 0) (λ x9 : ι → ι . x8 (λ x10 : ι → ι . 0) 0)))) (λ x8 : (ι → ι) → ι . λ x9 . x9) (λ x8 : ι → ι . λ x9 . setsum x7 (Inj1 0)))False.
...