Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: nat_p x0.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H1: even_nat x1.
Assume H2: even_nat x2.
Assume H3: even_nat x3.
Assume H4: even_nat x4.
Assume H5: mul_SNo 2 x0 = add_SNo ((λ x5 . mul_SNo x5 x5) x1) (add_SNo ((λ x5 . mul_SNo x5 x5) x2) (add_SNo ((λ x5 . mul_SNo x5 x5) x3) ((λ x5 . mul_SNo x5 x5) x4))).
Apply H1 with ∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9)))x5)x5.
Assume H6: x1omega.
Assume H7: ∃ x5 . and (x5omega) (x1 = mul_nat 2 x5).
Apply H2 with ∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9)))x5)x5.
Assume H8: x2omega.
Assume H9: ∃ x5 . and (x5omega) (x2 = mul_nat 2 x5).
Apply H3 with ∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9)))x5)x5.
Assume H10: x3omega.
Assume H11: ∃ x5 . and (x5omega) (x3 = mul_nat 2 x5).
Apply H4 with ∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9)))x5)x5.
Assume H12: x4omega.
Assume H13: ∃ x5 . and ... ....
...