Search for blocks/addresses/...

Proofgold Proof

pf
set y0 to be ...
set y1 to be ...
Apply functional extensionality with λ x2 . (λ x3 . ∀ x4 . nat_p x4) x2∀ x3 . In x3 x2∃ x4 . (∃ x5 . and (Subq x5 x4) (∃ x6 . and (exactly2 (binrep (Power (Power (Power 0))) 0)) (not (atleast4 (Power 0)))))∀ x5 . atleast5 (Union 0)atleast4 x4, λ x2 . (∀ x3 . nat_p x3)∀ x3 . In x3 x2∃ x4 . (∃ x5 . and (Subq x5 x4) (∃ x6 . and (exactly2 (binrep (Power (Power (Power 0))) 0)) (not (atleast4 (Power 0)))))∀ x5 . atleast5 (Union 0)atleast4 x4, λ x2 x3 : ι → ο . y1 x2, λ x2 x3 : ο . y1 x2 leaving 3 subgoals.
Let x2 of type ι be given.
set y3 to be λ x3 : ο → ο . ((λ x4 . ∀ x5 . nat_p x5) x2∀ x4 . In x4 x2∃ x5 . (∃ x6 . and (Subq x6 x5) (∃ x7 . and (exactly2 (binrep (Power (Power (Power 0))) 0)) (not (atleast4 (Power 0)))))∀ x6 . atleast5 (Union 0)atleast4 x5) = x3 (∀ x4 . ...∃ x5 . (∃ x6 . and (Subq x6 x5) (∃ x7 . and (exactly2 (binrep (Power (Power ...)) 0)) ...))∀ x6 . atleast5 (Union 0)atleast4 x5)
set y4 to be λ x4 : ο . (λ x5 x6 : ο . x5x6) ((λ x5 . ∀ x6 . nat_p x6) x2) = (λ x5 x6 : ο . x5x6) x4
set y5 to be λ x5 x6 : ο . y4 x5
Claim L0: y5 ((λ x6 . ∀ x7 . nat_p x7) x2) ((λ x6 . ∀ x7 . nat_p x7) x2)
Let x6 of type (οο) → (οο) → ο be given.
Assume H0: x6 ((λ x7 x8 : ο . x7x8) ((λ x7 . ∀ x8 . nat_p x8) y4)) ((λ x7 x8 : ο . x7x8) ((λ x7 . ∀ x8 . nat_p x8) y4)).
The subproof is completed by applying H0.
Apply L0 with λ x6 x7 : ο → ο . y5 x6.
Let x6 of type οοο be given.
Assume H1: x6 ((λ x7 . ∀ x8 . nat_p x8) y5∀ x7 . In x7 y5∃ x8 . (∃ x9 . and (Subq x9 x8) (∃ x10 . and (exactly2 (binrep (Power (Power (Power 0))) 0)) (not (atleast4 (Power 0)))))∀ x9 . atleast5 (Union 0)atleast4 x8) ((λ x7 . ∀ x8 . nat_p x8) y5∀ x7 . In x7 y5∃ x8 . (∃ x9 . and (Subq x9 x8) (∃ x10 . and (exactly2 (binrep (Power (Power (Power 0))) 0)) (not (atleast4 (Power 0)))))∀ x9 . atleast5 (Union 0)atleast4 x8).
The subproof is completed by applying H1.
...
...