Let x0 of type ι → ι → ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι → ι → ι be given.
Let x8 of type ι → ι → ι be given.
Let x9 of type ι → ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι → ο be given.
Let x12 of type ι → ι → ο be given.
Let x13 of type ι be given.
Assume H5:
∀ x14 x15 x16 . x12 x16 x13 ⟶ x12 x14 x13 ⟶ x12 x15 x13 ⟶ x11 x16 x14 ⟶ x11 x14 x15 ⟶ (x11 x16 x15 ⟶ False) ⟶ False.
Assume H6:
∀ x14 x15 x16 . x12 x16 x13 ⟶ x12 x14 x13 ⟶ x12 x15 x13 ⟶ x16 = x0 x14 x15 ⟶ (x11 x15 x16 ⟶ False) ⟶ False.
Assume H7:
∀ x14 x15 x16 . x12 x16 x13 ⟶ x12 x14 x13 ⟶ x12 x15 x13 ⟶ x11 x16 x14 ⟶ (x0 x15 (x10 x14 x16) = x10 (x0 x15 x14) x16 ⟶ False) ⟶ False.
Assume H9:
∀ x14 . (x12 (x9 x14) x14 ⟶ False) ⟶ False.
Assume H10:
∀ x14 x15 . x12 x15 x13 ⟶ x12 x14 x13 ⟶ (x12 (x0 x15 x14) x13 ⟶ False) ⟶ False.
Assume H11:
∀ x14 x15 . x12 x15 x13 ⟶ x12 x14 x13 ⟶ (x12 (x10 x15 x14) x13 ⟶ False) ⟶ False.
Assume H12:
(x12 x1 x3 ⟶ False) ⟶ False.
Assume H13:
∀ x14 x15 . x12 x15 x13 ⟶ x12 x14 x13 ⟶ (x11 x14 x15 ⟶ False) ⟶ (x8 x15 x14 = x7 x1 (x10 x14 x15) ⟶ False) ⟶ False.
Assume H14:
∀ x14 x15 . x12 x15 x13 ⟶ x12 x14 x13 ⟶ x11 x14 x15 ⟶ (x8 x15 x14 = x10 x15 x14 ⟶ False) ⟶ False.
Assume H15:
∀ x14 x15 . x12 x15 x13 ⟶ x12 x14 x13 ⟶ (x11 x15 x14 ⟶ False) ⟶ (x11 x14 x15 ⟶ False) ⟶ False.
Assume H16:
∀ x14 x15 . x12 x15 x13 ⟶ x12 x14 x13 ⟶ (x0 x15 x14 = x0 x14 x15 ⟶ False) ⟶ False.
Assume H17:
x0 x4 (x10 x6 x5) = x8 (x0 x4 x6) x5 ⟶ False.
Assume H18:
(x11 x5 x6 ⟶ False) ⟶ False.
Assume H19:
(x12 x4 x13 ⟶ False) ⟶ False.
Assume H20:
(x12 x6 x13 ⟶ False) ⟶ False.
Assume H21:
(x12 x5 x13 ⟶ False) ⟶ False.
Claim L74:
x12 (x0 x4 x6) x13 ⟶ False
Assume H74: x12 (x0 x4 x6) x13.
Apply L73 leaving 2 subgoals.
The subproof is completed by applying H74.
Apply L47.
Assume H75: x12 (x0 x4 x6) x13.
Apply L74.
The subproof is completed by applying H75.