Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Let x1 of type
ι
be given.
Let x2 of type
ι
be given.
Let x3 of type
ι
be given.
Assume H0:
02b90..
x0
x1
.
Assume H1:
02b90..
x2
x3
.
Assume H2:
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
(
02a50..
x2
x3
)
.
Assume H3:
∀ x4 .
prim1
x4
x3
⟶
099f3..
(
02a50..
x0
x1
)
x4
.
Apply H0 with
fe4bb..
(
02a50..
x0
x1
)
(
02a50..
x2
x3
)
.
Assume H4:
and
(
∀ x4 .
prim1
x4
x0
⟶
80242..
x4
)
(
∀ x4 .
prim1
x4
x1
⟶
80242..
x4
)
.
Apply H4 with
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x1
⟶
099f3..
x4
x5
)
⟶
fe4bb..
(
02a50..
x0
x1
)
(
02a50..
x2
x3
)
.
Assume H5:
∀ x4 .
prim1
x4
x0
⟶
80242..
x4
.
Assume H6:
∀ x4 .
prim1
x4
x1
⟶
80242..
x4
.
Assume H7:
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x1
⟶
099f3..
x4
x5
.
Apply H1 with
fe4bb..
(
02a50..
x0
x1
)
(
02a50..
x2
x3
)
.
Assume H8:
and
(
∀ x4 .
prim1
x4
x2
⟶
80242..
x4
)
(
∀ x4 .
prim1
x4
x3
⟶
80242..
x4
)
.
Apply H8 with
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x3
⟶
099f3..
x4
x5
)
⟶
fe4bb..
(
02a50..
x0
x1
)
(
02a50..
x2
x3
)
.
Assume H9:
∀ x4 .
prim1
x4
x2
⟶
80242..
x4
.
Assume H10:
∀ x4 .
prim1
x4
x3
⟶
80242..
x4
.
Assume H11:
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x3
⟶
099f3..
x4
x5
.
Apply unknownprop_e277188ae242e07bd6727f267e38747aecd739d129890076e65b92339f7beb98 with
x0
,
x1
,
fe4bb..
(
02a50..
x0
x1
)
(
02a50..
x2
x3
)
leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H12:
and
(
and
(
and
(
80242..
(
02a50..
x0
x1
)
)
(
prim1
(
e4431..
(
02a50..
x0
x1
)
)
(
4ae4a..
(
0ac37..
(
a842e..
x0
(
λ x4 .
4ae4a..
(
e4431..
x4
)
)
)
(
a842e..
x1
(
λ x4 .
4ae4a..
(
e4431..
x4
)
)
)
)
)
)
)
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
(
02a50..
x0
x1
)
)
)
(
∀ x4 .
prim1
x4
x1
⟶
099f3..
(
02a50..
x0
x1
)
x4
)
.
Apply H12 with
(
∀ x4 .
80242..
x4
⟶
(
∀ x5 .
prim1
x5
x0
⟶
099f3..
x5
x4
)
⟶
(
∀ x5 .
prim1
x5
x1
⟶
099f3..
x4
x5
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x4
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x4
)
)
⟶
fe4bb..
(
02a50..
x0
x1
)
(
02a50..
x2
x3
)
.
Assume H13:
and
(
and
...
...
)
...
.
...
■