Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Assume H0: SNo x0.
Assume H1: SNo x1.
Assume H2: SNo x2.
Assume H3: SNoLt x1 x2.
Apply add_SNo_prop1 with x0, x1, SNoLt (add_SNo x0 x1) (add_SNo x0 x2) leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Assume H4: and (and (and (and (SNo (add_SNo x0 x1)) (∀ x3 . x3SNoL x0SNoLt (add_SNo x3 x1) (add_SNo x0 x1))) (∀ x3 . x3SNoR x0SNoLt (add_SNo x0 x1) (add_SNo x3 x1))) (∀ x3 . x3SNoL x1SNoLt (add_SNo x0 x3) (add_SNo x0 x1))) (∀ x3 . x3SNoR x1SNoLt (add_SNo x0 x1) (add_SNo x0 x3)).
Apply H4 with SNoCutP (binunion {add_SNo x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))SNoLt (add_SNo x0 x1) (add_SNo x0 x2).
Assume H5: and (and (and (SNo (add_SNo x0 x1)) (∀ x3 . x3SNoL x0SNoLt (add_SNo x3 x1) (add_SNo x0 x1))) (∀ x3 . x3SNoR x0SNoLt (add_SNo x0 x1) (add_SNo x3 x1))) (∀ x3 . x3SNoL x1SNoLt (add_SNo x0 x3) (add_SNo x0 x1)).
Apply H5 with (∀ x3 . x3SNoR x1SNoLt (add_SNo x0 x1) (add_SNo x0 x3))SNoCutP (binunion {add_SNo x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))SNoLt (add_SNo x0 x1) (add_SNo x0 x2).
Assume H6: and (and (SNo (add_SNo x0 x1)) (∀ x3 . x3SNoL x0SNoLt (add_SNo x3 x1) (add_SNo x0 x1))) (∀ x3 . x3SNoR x0SNoLt (add_SNo x0 x1) (add_SNo x3 x1)).
Apply H6 with ......SNoCutP (binunion {add_SNo x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) ...))SNoLt (add_SNo x0 x1) (add_SNo x0 x2).
...