Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιο be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Apply unpack_b_b_r_e_e_o_eq with λ x6 . λ x7 x8 : ι → ι → ι . λ x9 : ι → ι → ο . λ x10 x11 . explicit_OrderedField x6 x10 x11 x7 x8 x9, x0, x1, x2, x3, x4, x5.
Let x6 of type ιιι be given.
Assume H0: ∀ x7 . x7x0∀ x8 . x8x0x1 x7 x8 = x6 x7 x8.
Let x7 of type ιιι be given.
Assume H1: ∀ x8 . x8x0∀ x9 . x9x0x2 x8 x9 = x7 x8 x9.
Let x8 of type ιιο be given.
Assume H2: ∀ x9 . x9x0∀ x10 . x10x0iff (x3 x9 x10) (x8 x9 x10).
Let x9 of type οοο be given.
Apply prop_ext with explicit_OrderedField x0 x4 x5 x1 x2 x3, explicit_OrderedField x0 x4 x5 x6 x7 x8, λ x10 x11 : ο . x9 x11 x10.
Apply explicit_OrderedField_repindep with x0, x4, x5, x1, x2, x3, x6, x7, x8 leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.