Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type (((ιι) → ((ιι) → ι) → (ιι) → ι) → ι) → (((ιιι) → ιι) → ι) → ι be given.
Let x1 of type (((((ιι) → ι) → ιιι) → ι) → (((ιι) → ι) → ι) → (ιι) → ιιι) → (ι((ιι) → ιι) → ιι) → ι be given.
Let x2 of type (ιι) → (((ιιι) → (ιι) → ιι) → ((ιι) → ι) → ι) → ι be given.
Let x3 of type (ι(ιι) → ιιι) → ((((ιι) → ι) → (ιι) → ιι) → ιι) → ι be given.
Assume H0: ∀ x4 : (((ι → ι)ι → ι)ι → ι)ι → ι . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 x7 . x3 (λ x8 . λ x9 : ι → ι . λ x10 x11 . x3 (λ x12 . λ x13 : ι → ι . λ x14 x15 . 0) (λ x12 : ((ι → ι) → ι)(ι → ι)ι → ι . λ x13 . 0)) (λ x8 : ((ι → ι) → ι)(ι → ι)ι → ι . λ x9 . x9) = Inj1 (Inj0 (x4 (λ x8 : (ι → ι)ι → ι . λ x9 . x9) (x1 (λ x8 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x9 : ((ι → ι) → ι) → ι . λ x10 : ι → ι . λ x11 x12 . x2 (λ x13 . 0) (λ x13 : (ι → ι → ι)(ι → ι)ι → ι . λ x14 : (ι → ι) → ι . 0)) (λ x8 . λ x9 : (ι → ι)ι → ι . λ x10 . setsum 0 0)))).
Assume H1: ∀ x4 . ∀ x5 : ((ι → ι → ι) → ι) → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x3 (λ x8 . λ x9 : ι → ι . λ x10 x11 . setsum (setsum x10 0) 0) (λ x8 : ((ι → ι) → ι)(ι → ι)ι → ι . λ x9 . 0) = x5 (λ x8 : ι → ι → ι . 0).
Apply FalseE with .........(∀ x4 x5 x6 x7 . x1 (λ x8 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x9 : ((ι → ι) → ι) → ι . λ x10 : ι → ι . λ x11 x12 . 0) (λ x8 . λ x9 : (ι → ι)ι → ι . λ x10 . x3 (λ x11 . λ x12 : ι → ι . λ x13 x14 . x14) (λ x11 : ((ι → ι) → ι)(ι → ι)ι → ι . λ x12 . Inj1 (x0 (λ x13 : (ι → ι)((ι → ι) → ι)(ι → ι) → ι . setsum 0 0) (λ x13 : (ι → ι → ι)ι → ι . 0)))) = setsum (x1 (λ x8 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x9 : ((ι → ι) → ι) → ι . λ x10 : ι → ι . λ x11 x12 . x10 (Inj0 (x9 (λ x13 : ι → ι . 0)))) (λ x8 . λ x9 : (ι → ι)ι → ι . λ x10 . 0)) (x1 (λ x8 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x9 : ((ι → ι) → ι) → ι . λ x10 : ι → ι . λ x11 x12 . x1 (λ x13 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 : ι → ι . λ x16 x17 . setsum (x2 (λ x18 . 0) (λ x18 : (ι → ι → ι)(ι → ι)ι → ι . λ x19 : (ι → ι) → ι . 0)) (x1 (λ x18 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x19 : ((ι → ι) → ι) → ι . λ x20 : ι → ι . λ x21 x22 . 0) (λ x18 . λ x19 : (ι → ι)ι → ι . λ x20 . 0))) (λ x13 . λ x14 : (ι → ι)ι → ι . λ x15 . x12)) ...))(∀ x4 x5 x6 x7 . x0 (λ x8 : (ι → ι)((ι → ι) → ι)(ι → ι) → ι . x1 (λ x9 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 x13 . x11 (x2 (λ x14 . 0) (λ x14 : (ι → ι → ι)(ι → ι)ι → ι . λ x15 : (ι → ι) → ι . 0))) (λ x9 . λ x10 : (ι → ι)ι → ι . λ x11 . 0)) (λ x8 : (ι → ι → ι)ι → ι . setsum (Inj0 (Inj1 x7)) (setsum (setsum (x8 (λ x9 x10 . 0) 0) (setsum 0 0)) 0)) = x1 (λ x8 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x9 : ((ι → ι) → ι) → ι . λ x10 : ι → ι . λ x11 x12 . setsum (x9 (λ x13 : ι → ι . x13 (Inj1 0))) (x1 (λ x13 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 : ι → ι . λ x16 x17 . x1 (λ x18 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x19 : ((ι → ι) → ι) → ι . λ x20 : ι → ι . λ x21 x22 . x22) (λ x18 . λ x19 : (ι → ι)ι → ι . λ x20 . Inj0 0)) (λ x13 . λ x14 : (ι → ι)ι → ι . λ x15 . Inj0 (Inj1 0)))) (λ x8 . λ x9 : (ι → ι)ι → ι . λ x10 . Inj1 0))(∀ x4 : ι → ι . ∀ x5 x6 x7 . x0 (λ x8 : (ι → ι)((ι → ι) → ι)(ι → ι) → ι . x3 (λ x9 . λ x10 : ι → ι . λ x11 x12 . x1 (λ x13 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 : ι → ι . λ x16 x17 . 0) (λ x13 . λ x14 : (ι → ι)ι → ι . λ x15 . x1 (λ x16 : (((ι → ι) → ι)ι → ι → ι) → ι . λ x17 : ((ι → ι) → ι) → ι . λ x18 : ι → ι . λ x19 x20 . x20) (λ x16 . λ x17 : (ι → ι)ι → ι . λ x18 . x15))) (λ x9 : ((ι → ι) → ι)(ι → ι)ι → ι . λ x10 . x10)) (λ x8 : (ι → ι → ι)ι → ι . x0 (λ x9 : (ι → ι)((ι → ι) → ι)(ι → ι) → ι . x7) (λ x9 : (ι → ι → ι)ι → ι . 0)) = Inj1 (x4 (setsum 0 0)))False.
...