Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Apply Repl_Empty with λ x3 . SetAdjoin x3 (Sing 4), λ x3 x4 . binunion (binunion (binunion x0 {(λ x6 . SetAdjoin x6 (Sing 2)) x5|x5 ∈ x1}) {(λ x6 . SetAdjoin x6 (Sing 3)) x5|x5 ∈ x2}) x4 = binunion (binunion x0 {(λ x6 . SetAdjoin x6 (Sing 2)) x5|x5 ∈ x1}) {(λ x6 . SetAdjoin x6 (Sing 3)) x5|x5 ∈ x2}.
Apply binunion_idr with binunion (binunion x0 {(λ x4 . SetAdjoin x4 (Sing 2)) x3|x3 ∈ x1}) {(λ x4 . SetAdjoin x4 (Sing 3)) x3|x3 ∈ x2}, λ x3 x4 . x4 = binunion (binunion x0 {(λ x6 . SetAdjoin x6 (Sing 2)) x5|x5 ∈ x1}) {(λ x6 . SetAdjoin x6 (Sing 3)) x5|x5 ∈ x2}.
Let x3 of type ιιο be given.
Assume H0: x3 (binunion (binunion x0 {(λ x5 . SetAdjoin x5 (Sing 2)) x4|x4 ∈ x1}) {(λ x5 . SetAdjoin x5 (Sing 3)) x4|x4 ∈ x2}) (binunion (binunion x0 {(λ x5 . SetAdjoin x5 (Sing 2)) x4|x4 ∈ x1}) {(λ x5 . SetAdjoin x5 (Sing 3)) x4|x4 ∈ x2}).
The subproof is completed by applying H0.