Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
→
(
ι
→
ο
) →
ο
be given.
Let x1 of type
ι
→
(
ι
→
ο
) →
ο
be given.
Assume H0:
PNoLt_pwise
x0
x1
.
Claim L1:
...
...
Apply ordinal_ind with
λ x2 .
or
(
∃ x3 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x2
x3
)
(
∃ x3 .
and
(
x3
∈
x2
)
(
∃ x4 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x3
x4
)
)
.
Let x2 of type
ι
be given.
Assume H2:
ordinal
x2
.
Apply H2 with
(
∀ x3 .
x3
∈
x2
⟶
or
(
∃ x4 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x3
x4
)
(
∃ x4 .
and
(
x4
∈
x3
)
(
∃ x5 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x4
x5
)
)
)
⟶
or
(
∃ x3 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x2
x3
)
(
∃ x3 .
and
(
x3
∈
x2
)
(
∃ x4 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x3
x4
)
)
.
Assume H3:
TransSet
x2
.
Assume H4:
∀ x3 .
x3
∈
x2
⟶
TransSet
x3
.
Assume H5:
∀ x3 .
x3
∈
x2
⟶
or
(
∃ x4 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x3
x4
)
(
∃ x4 .
and
(
x4
∈
x3
)
(
∃ x5 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x4
x5
)
)
.
Apply dneg with
or
(
∃ x3 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x2
x3
)
(
∃ x3 .
and
(
x3
∈
x2
)
(
∃ x4 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x3
x4
)
)
.
Assume H6:
not
(
or
(
∃ x3 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x2
x3
)
(
∃ x3 .
and
(
x3
∈
x2
)
(
∃ x4 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x3
x4
)
)
)
.
Apply not_or_and_demorgan with
∃ x3 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x2
x3
,
∃ x3 .
and
(
x3
∈
x2
)
(
∃ x4 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x3
x4
)
,
False
leaving 2 subgoals.
The subproof is completed by applying H6.
Assume H7:
not
(
∃ x3 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x2
x3
)
.
Assume H8:
not
(
∃ x3 .
and
(
x3
∈
x2
)
(
∃ x4 :
ι → ο
.
PNo_rel_strict_split_imv
x0
x1
x3
x4
)
)
.
Claim L9:
...
...
Apply ordinal_lim_or_succ with
x2
,
False
leaving 3 subgoals.
The subproof is completed by applying H2.
Assume H10:
∀ x3 .
x3
∈
x2
⟶
ordsucc
x3
∈
x2
.
Claim L11:
...
...
Claim L12:
...
...
Apply H7.
Let x3 of type
ο
be given.
Assume H13:
∀ x4 :
ι → ο
.
PNo_rel_strict_uniq_imv
x0
x1
x2
x4
⟶
x3
.
Apply H13 with
λ x4 .
∀ x5 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
(
ordsucc
x4
)
x5
⟶
x5
x4
.
Apply andI with
PNo_rel_strict_imv
x0
x1
x2
(
λ x4 .
∀ x5 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
(
ordsucc
x4
)
x5
⟶
x5
x4
)
,
∀ x4 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
x2
x4
⟶
PNoEq_
x2
(
λ x5 .
∀ x6 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
(
ordsucc
x5
)
x6
⟶
x6
x5
)
x4
leaving 2 subgoals.
Apply andI with
PNo_rel_strict_upperbd
x0
x2
(
λ x4 .
∀ x5 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
(
ordsucc
x4
)
x5
⟶
x5
x4
)
,
PNo_rel_strict_lowerbd
x1
x2
(
λ x4 .
∀ x5 :
ι → ο
.
PNo_rel_strict_imv
x0
x1
...
...
⟶
x5
x4
)
leaving 2 subgoals.
...
...
...
...
■