Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι → ο be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ο be given.
Let x5 of type ι be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι be given.
Let x8 of type ι → ι be given.
Let x9 of type ι be given.
Let x10 of type ι → ο be given.
Let x11 of type ι be given.
Let x12 of type ι → ι be given.
Let x13 of type ι → ι → ι be given.
Let x14 of type ι → ι → ι → ο be given.
Let x15 of type ι → ι → ι be given.
Let x16 of type ι be given.
Let x17 of type ι be given.
Let x18 of type ι → ι → ι → ι → ι → ι be given.
Let x19 of type ι → ο be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι be given.
Let x23 of type ι be given.
Let x24 of type ι → ι → ι be given.
Let x25 of type ι → ι → ι → ι → ι be given.
Let x26 of type ι → ι → ι → ι → ι be given.
Let x27 of type ι → ι be given.
Let x28 of type ι → ι → ι be given.
Let x29 of type ι be given.
Let x30 of type ι be given.
Let x31 of type ι be given.
Let x32 of type ι → ι → ι be given.
Let x33 of type ι → ι be given.
Let x34 of type ι be given.
Let x35 of type ι → ι → ο be given.
Let x36 of type ι → ι be given.
Let x37 of type ι → ι be given.
Let x38 of type ι → ι → ι be given.
Let x39 of type ι → ι be given.
Let x40 of type ι → ο be given.
Let x41 of type ι be given.
Let x42 of type ι → ο be given.
Let x43 of type ι → ο be given.
Let x44 of type ι → ι be given.
Let x45 of type ι → ι → ο be given.
Let x46 of type ι → ι → ι → ι → ο be given.
Let x47 of type ι be given.
Let x48 of type ι → ι → ο be given.
Let x49 of type ι → ι be given.
Let x50 of type ι → ι → ι be given.
Let x51 of type ι → ι → ι → ι be given.
Let x52 of type ι → ι → ο be given.
Let x53 of type ι → ο be given.
Let x54 of type ι → ο be given.
Let x55 of type ι → ο be given.
Assume H5:
∀ x56 x57 . x55 x57 ⟶ (x57 = x56 ⟶ False) ⟶ x55 x56 ⟶ False.
Assume H6:
∀ x56 x57 . x0 x56 x57 ⟶ x55 x57 ⟶ False.
Assume H7:
∀ x56 x57 x58 x59 . x54 x59 ⟶ x48 x59 (x49 (x50 x56 x57)) ⟶ x53 x58 ⟶ x54 x58 ⟶ x0 x58 (x51 x56 x57 x59) ⟶ (x52 x59 x58 ⟶ False) ⟶ False.
Assume H8:
∀ x56 x57 x58 x59 . x54 x59 ⟶ x48 x59 (x49 (x50 x56 x57)) ⟶ x54 x58 ⟶ x48 x58 (x49 (x50 x56 x57)) ⟶ x0 x58 (x51 x56 x57 x59) ⟶ (x1 x58 x56 ⟶ False) ⟶ False.
Assume H9:
∀ x56 . x55 x56 ⟶ (x56 = x47 ⟶ False) ⟶ False.
Assume H10:
∀ x56 x57 x58 x59 . x54 x59 ⟶ x48 x59 (x49 (x50 x56 x57)) ⟶ x0 x58 (x51 x56 x57 x59) ⟶ (x48 x58 (x49 (x50 x56 x57)) ⟶ False) ⟶ False.
Assume H11:
∀ x56 x57 x58 x59 . x54 x59 ⟶ x48 x59 (x49 (x50 x56 x57)) ⟶ x0 x58 (x51 x56 x57 x59) ⟶ (x54 x58 ⟶ False) ⟶ False.
Assume H12:
∀ x56 x57 x58 . x0 x56 x57 ⟶ x48 x57 (x49 x58) ⟶ x55 x58 ⟶ False.
Assume H13:
∀ x56 x57 x58 x59 x60 . x54 x60 ⟶ x48 x60 (x49 (x50 x56 x57)) ⟶ x54 x59 ⟶ x48 x59 (x49 (x50 x56 x57)) ⟶ x53 x58 ⟶ x54 x58 ⟶ x52 x60 x58 ⟶ x46 x56 x57 x59 x60 ⟶ (x52 x59 x58 ⟶ False) ⟶ False.
Assume H14:
∀ x56 x57 x58 . x0 x57 x58 ⟶ x48 x58 (x49 x56) ⟶ (x48 x57 x56 ⟶ False) ⟶ False.
Assume H15:
∀ x56 x57 . x45 x57 x56 ⟶ (x48 x57 (x49 x56) ⟶ False) ⟶ False.
Assume H16:
∀ x56 x57 . x48 x57 (x49 x56) ⟶ (x45 x57 x56 ⟶ False) ⟶ False.
Assume H17:
∀ x56 x57 . x48 x56 x57 ⟶ (x55 x57 ⟶ False) ⟶ (x0 x56 x57 ⟶ False) ⟶ False.
Assume H18:
∀ x56 x57 . x0 x57 ... ⟶ (x48 x57 x56 ⟶ False) ⟶ False.