Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
80242..
x0
.
Let x1 of type
ο
be given.
Assume H1:
∀ x2 x3 .
02b90..
x2
x3
⟶
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
e4431..
x4
)
(
e4431..
x0
)
)
⟶
(
∀ x4 .
prim1
x4
x3
⟶
prim1
(
e4431..
x4
)
(
e4431..
x0
)
)
⟶
x0
=
02a50..
x2
x3
⟶
x1
.
Claim L2:
...
...
Claim L3:
...
...
Claim L4:
...
...
Claim L5:
...
...
Apply H1 with
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x2 .
099f3..
x2
x0
)
,
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x2 .
099f3..
x0
x2
)
leaving 4 subgoals.
Apply and3I with
∀ x2 .
prim1
x2
(
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x3 .
099f3..
x3
x0
)
)
⟶
80242..
x2
,
∀ x2 .
prim1
x2
(
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x3 .
099f3..
x0
x3
)
)
⟶
80242..
x2
,
∀ x2 .
prim1
x2
(
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x3 .
099f3..
x3
x0
)
)
⟶
∀ x3 .
prim1
x3
(
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x4 .
099f3..
x0
x4
)
)
⟶
099f3..
x2
x3
leaving 3 subgoals.
Let x2 of type
ι
be given.
Assume H6:
prim1
x2
(
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x3 .
099f3..
x3
x0
)
)
.
Apply L4 with
x2
,
80242..
x2
leaving 2 subgoals.
The subproof is completed by applying H6.
Assume H7:
and
(
80242..
x2
)
(
prim1
(
e4431..
x2
)
(
e4431..
x0
)
)
.
Assume H8:
099f3..
x2
x0
.
Apply H7 with
80242..
x2
.
Assume H9:
80242..
x2
.
Assume H10:
prim1
(
e4431..
x2
)
(
e4431..
x0
)
.
The subproof is completed by applying H9.
Let x2 of type
ι
be given.
Assume H6:
prim1
x2
(
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x3 .
099f3..
x0
x3
)
)
.
Apply L5 with
x2
,
80242..
x2
leaving 2 subgoals.
The subproof is completed by applying H6.
Assume H7:
and
(
80242..
x2
)
(
prim1
(
e4431..
x2
)
(
e4431..
x0
)
)
.
Assume H8:
099f3..
x0
x2
.
Apply H7 with
80242..
x2
.
Assume H9:
80242..
x2
.
Assume H10:
prim1
(
e4431..
x2
)
(
e4431..
x0
)
.
The subproof is completed by applying H9.
Let x2 of type
ι
be given.
Assume H6:
prim1
x2
(
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x3 .
099f3..
x3
x0
)
)
.
Let x3 of type
ι
be given.
Assume H7:
prim1
x3
(
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x4 .
099f3..
x0
x4
)
)
.
Apply L4 with
x2
,
099f3..
x2
x3
leaving 2 subgoals.
The subproof is completed by applying H6.
Assume H8:
and
(
80242..
x2
)
(
prim1
(
e4431..
x2
)
(
e4431..
x0
)
)
.
Apply H8 with
099f3..
x2
x0
⟶
099f3..
x2
x3
.
Assume H9:
80242..
x2
.
Assume H10:
prim1
(
e4431..
x2
)
(
e4431..
x0
)
.
Assume H11:
099f3..
x2
x0
.
Apply L5 with
x3
,
099f3..
x2
x3
leaving 2 subgoals.
The subproof is completed by applying H7.
Assume H12:
and
(
80242..
x3
)
(
prim1
(
e4431..
x3
)
(
e4431..
x0
)
)
.
Apply H12 with
099f3..
x0
x3
⟶
099f3..
x2
x3
.
Assume H13:
80242..
x3
.
Assume H14:
prim1
...
...
.
...
...
...
...
■