Search for blocks/addresses/...

Proofgold Proof

pf
Apply df_op__df_ot__df_uni__df_int__df_iun__df_iin__df_disj__df_br__df_opab__df_opab_b__df_mpt__df_tr__ax_rep__ax_pow__df_id__df_eprel__df_po__df_so with ∀ x0 : ι → ο . wceq (copab_b (λ x1 . x0 x1)) (cab (λ x1 . wex (λ x2 . wex (λ x3 . wa (wceq (cv x1) (cop (cv x3) (cv x3))) (x0 x3))))).
Assume H0: ∀ x0 x1 : ι → ο . wceq (cop x0 x1) (cab (λ x2 . w3a (wcel x0 cvv) (wcel x1 cvv) (wcel (cv x2) (cpr (csn x0) (cpr x0 x1))))).
Assume H1: ∀ x0 x1 x2 : ι → ο . wceq (cotp x0 x1 x2) (cop (cop x0 x1) x2).
Assume H2: ∀ x0 : ι → ο . wceq (cuni x0) (cab (λ x1 . wex (λ x2 . wa (wcel (cv x1) (cv x2)) (wcel (cv x2) x0)))).
Assume H3: ∀ x0 : ι → ο . wceq (cint x0) (cab (λ x1 . ∀ x2 . wcel (cv x2) x0wcel (cv x1) (cv x2))).
Assume H4: ∀ x0 x1 : ι → ι → ο . wceq (ciun (λ x2 . x0 x2) (λ x2 . x1 x2)) (cab (λ x2 . wrex (λ x3 . wcel (cv x2) (x1 x3)) (λ x3 . x0 x3))).
Assume H5: ∀ x0 x1 : ι → ι → ο . wceq (ciin (λ x2 . x0 x2) (λ x2 . x1 x2)) (cab (λ x2 . wral (λ x3 . wcel (cv x2) (x1 x3)) (λ x3 . x0 x3))).
Assume H6: ∀ x0 x1 : ι → ι → ο . wb (wdisj (λ x2 . x0 x2) (λ x2 . x1 x2)) (∀ x2 . wrmo (λ x3 . wcel (cv x2) (x1 x3)) (λ x3 . x0 x3)).
Assume H7: ∀ x0 x1 x2 : ι → ο . wb (wbr x0 x1 x2) (wcel (cop x0 x1) x2).
Assume H8: ∀ x0 : ι → ι → ο . wceq (copab (λ x1 x2 . x0 x1 x2)) (cab (λ x1 . wex (λ x2 . wex (λ x3 . wa (wceq (cv x1) (cop (cv x2) (cv x3))) (x0 x2 x3))))).
Assume H9: ∀ x0 : ι → ο . wceq (copab_b (λ x1 . x0 x1)) (cab (λ x1 . wex (λ x2 . wex (λ x3 . wa (wceq (cv x1) (cop (cv x3) (cv x3))) (x0 x3))))).
Assume H10: ∀ x0 x1 : ι → ι → ο . wceq (cmpt (λ x2 . x0 x2) (λ x2 . x1 x2)) (copab (λ x2 x3 . wa (wcel (cv x2) (x0 x2)) (wceq (cv x3) (x1 x2)))).
Assume H11: ∀ x0 : ι → ο . wb (wtr x0) (wss (cuni x0) x0).
Assume H12: ∀ x0 : ι → ι → ι → ο . ∀ x1 . ...wex ....
...