Search for blocks/addresses/...

Proofgold Proof

pf
Apply df_rmo__df_rab__df_v__df_cdeq__df_sbc__df_csb__df_dif__df_un__df_in__df_ss__df_pss__df_symdif__df_nul__df_if__df_pw__df_sn__df_pr__df_tp with ∀ x0 x1 : ι → ο . wceq (cun x0 x1) (cab (λ x2 . wo (wcel (cv x2) x0) (wcel (cv x2) x1))).
Assume H0: ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . wb (wrmo (λ x2 . x0 x2) (λ x2 . x1 x2)) (wmo (λ x2 . wa (wcel (cv x2) (x1 x2)) (x0 x2))).
Assume H1: ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . wceq (crab (λ x2 . x0 x2) (λ x2 . x1 x2)) (cab (λ x2 . wa (wcel (cv x2) (x1 x2)) (x0 x2))).
Assume H2: wceq cvv (cab (λ x0 . wceq (cv x0) (cv x0))).
Assume H3: ∀ x0 : ο . ∀ x1 x2 . wb (wcdeq x0 x1 x2) (wceq (cv x1) (cv x2)x0).
Assume H4: ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . ∀ x2 . wb (wsbc (λ x3 . x0 x3) (x1 x2)) (wcel (x1 x2) (cab (λ x3 . x0 x3))).
Assume H5: ∀ x0 x1 : ι → ι → ο . ∀ x2 . wceq (csb (x0 x2) (λ x3 . x1 x3)) (cab (λ x3 . wsbc (λ x4 . wcel (cv x3) (x1 x4)) (x0 x2))).
Assume H6: ∀ x0 x1 : ι → ο . wceq (cdif x0 x1) (cab (λ x2 . wa (wcel (cv x2) x0) (wn (wcel (cv x2) x1)))).
Assume H7: ∀ x0 x1 : ι → ο . wceq (cun x0 x1) (cab (λ x2 . wo (wcel (cv x2) x0) (wcel (cv x2) x1))).
Assume H8: ∀ x0 x1 : ι → ο . wceq (cin x0 x1) (cab (λ x2 . wa (wcel (cv x2) x0) (wcel (cv x2) x1))).
Assume H9: ∀ x0 x1 : ι → ο . wb (wss x0 x1) (wceq (cin x0 x1) x0).
Assume H10: ∀ x0 x1 : ι → ο . wb (wpss x0 x1) (wa (wss x0 x1) (wne x0 x1)).
Assume H11: ∀ x0 x1 : ι → ο . wceq (csymdif x0 x1) (cun (cdif x0 x1) (cdif x1 x0)).
Assume H12: wceq c0 (cdif cvv cvv).
Assume H13: ∀ x0 : ο . ∀ x1 x2 : ι → ο . wceq (cif x0 x1 x2) (cab (λ x3 . wo (wa (wcel (cv x3) x1) x0) (wa (wcel (cv x3) x2) (wn x0)))).
Assume H14: ∀ x0 : ι → ο . wceq (cpw x0) (cab (λ x1 . wss (cv x1) x0)).
Assume H15: ∀ x0 : ι → ο . wceq (csn x0) (cab (λ x1 . wceq ... ...)).
...