Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιο be given.
Assume H0: ec962.. (b5cc3.. x0 x1 x2).
Apply H0 with λ x3 . x3 = b5cc3.. x0 x1 x2∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0prim1 (x1 x4 x5) x0 leaving 2 subgoals.
Let x3 of type ι be given.
Let x4 of type ιιι be given.
Assume H1: ∀ x5 . prim1 x5 x3∀ x6 . prim1 x6 x3prim1 (x4 x5 x6) x3.
Let x5 of type ιιο be given.
Assume H2: b5cc3.. x3 x4 x5 = b5cc3.. x0 x1 x2.
Apply unknownprop_81f50ce581f2df7efe78405976e8abc06e39d88757c8777dde0290302ef69e6c with x3, x0, x4, x1, x5, x2, ∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0prim1 (x1 x6 x7) x0 leaving 2 subgoals.
The subproof is completed by applying H2.
Assume H3: and (x3 = x0) (∀ x6 . prim1 x6 x3∀ x7 . prim1 x7 x3x4 x6 x7 = x1 x6 x7).
Apply H3 with (∀ x6 . prim1 x6 x3∀ x7 . prim1 x7 x3x5 x6 x7 = x2 x6 x7)∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0prim1 (x1 x6 x7) x0.
Assume H4: x3 = x0.
Assume H5: ∀ x6 . prim1 x6 x3∀ x7 . prim1 x7 x3x4 x6 x7 = x1 x6 x7.
Assume H6: ∀ x6 . prim1 x6 x3∀ x7 . prim1 x7 x3x5 x6 x7 = x2 x6 x7.
Apply H4 with λ x6 x7 . ∀ x8 . prim1 x8 x6∀ x9 . prim1 x9 x6prim1 (x1 x8 x9) x6.
Let x6 of type ι be given.
Assume H7: prim1 x6 x3.
Let x7 of type ι be given.
Assume H8: prim1 x7 x3.
Apply H5 with x6, x7, λ x8 x9 . prim1 x8 x3 leaving 3 subgoals.
The subproof is completed by applying H7.
The subproof is completed by applying H8.
Apply H1 with x6, x7 leaving 2 subgoals.
The subproof is completed by applying H7.
The subproof is completed by applying H8.
Let x3 of type ιιο be given.
Assume H1: x3 (b5cc3.. x0 x1 x2) (b5cc3.. x0 x1 x2).
The subproof is completed by applying H1.