Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H0: SNo x1.
Assume H1: ∀ x6 . x6SNoS_ (SNoLev x0)mul_SNo x6 x1 = mul_SNo x1 x6.
Assume H2: ∀ x6 . x6SNoS_ (SNoLev x1)mul_SNo x0 x6 = mul_SNo x6 x0.
Assume H3: ∀ x6 . x6SNoS_ (SNoLev x0)∀ x7 . x7SNoS_ (SNoLev x1)mul_SNo x6 x7 = mul_SNo x7 x6.
Assume H4: ∀ x6 . x6x3∀ x7 : ο . (∀ x8 . x8SNoL x0∀ x9 . x9SNoR x1x6 = add_SNo (mul_SNo x8 x1) (add_SNo (mul_SNo x0 x9) (minus_SNo (mul_SNo x8 x9)))x7)(∀ x8 . x8SNoR x0∀ x9 . x9SNoL x1x6 = add_SNo (mul_SNo x8 x1) (add_SNo (mul_SNo x0 x9) (minus_SNo (mul_SNo x8 x9)))x7)x7.
Assume H5: ∀ x6 . x6SNoL x0∀ x7 . x7SNoR x1add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x3.
Assume H6: ∀ x6 . x6SNoR x0∀ x7 . x7SNoL x1add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x3.
Assume H7: ∀ x6 . x6x5∀ x7 : ο . (∀ x8 . x8SNoL x1∀ x9 . x9SNoR x0x6 = add_SNo (mul_SNo x8 x0) (add_SNo (mul_SNo x1 x9) (minus_SNo (mul_SNo x8 x9)))x7)(∀ x8 . x8SNoR x1∀ x9 . x9SNoL x0x6 = add_SNo (mul_SNo x8 x0) (add_SNo (mul_SNo x1 x9) (minus_SNo (mul_SNo x8 x9)))x7)x7.
Assume H8: ∀ x6 . x6SNoL x1∀ x7 . x7SNoR x0add_SNo (mul_SNo x6 x0) (add_SNo (mul_SNo x1 x7) (minus_SNo (mul_SNo x6 x7)))x5.
Assume H9: ∀ x6 . x6SNoR x1∀ x7 . x7SNoL x0add_SNo (mul_SNo x6 x0) (add_SNo (mul_SNo x1 x7) (minus_SNo (mul_SNo x6 x7)))x5.
Assume H10: x2 = x4.
Assume H11: ....
...