Let x0 of type ι be given.
Let x1 of type ι → ι → ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ι → ι be given.
Let x7 of type ι → ι → ι be given.
Let x8 of type ι → ι → ι → ι be given.
Let x9 of type ι → ι → ι → ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι → ι be given.
Let x12 of type ι → ι → ι be given.
Let x13 of type ι → ι → ι be given.
Assume H2:
... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x13 x14 x15 = x1 (x3 x4 (x3 x4 x14)) (x3 x15 x14)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x8 x14 x15 x16 = x2 (x1 x15 x14) (x1 x15 (x1 x14 x16))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x9 x14 x15 x16 = x3 (x1 (x1 x16 x14) x15) (x1 x14 x15)) ⟶ (∀ x14 . In x14 x0 ⟶ x2 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x2 x14 x14 = x4) ⟶ (∀ x14 . In x14 x0 ⟶ x3 x14 x4 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x3 x14 x14 = x4) ⟶ (∀ x14 . In x14 x0 ⟶ x7 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x10 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x11 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x12 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x13 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x8 x4 x14 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x8 x14 x4 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x9 x4 x14 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x9 x14 x4 x15 = x15) ⟶ ∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x1 x14 (x1 x15 x16) = x1 (x1 x14 x15) x16.