Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ο be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι → ι → ι → ι → ι be given.
Let x8 of type ι → ι → ι → ι → ο be given.
Let x9 of type ι → ι → ι → ο be given.
Let x10 of type ι → ι → ο be given.
Let x11 of type ι → ο be given.
Let x12 of type ι → ο be given.
Let x13 of type ι be given.
Let x14 of type ι → ι be given.
Let x15 of type ι → ο be given.
Let x16 of type ι be given.
Let x17 of type ι → ι be given.
Let x18 of type ι → ι → ι be given.
Let x19 of type ι → ι be given.
Let x20 of type ι → ι → ι → ι → ι be given.
Let x21 of type ι → ι → ι → ι → ι be given.
Let x22 of type ι be given.
Let x23 of type ι be given.
Let x24 of type ι be given.
Let x25 of type ι be given.
Let x26 of type ι be given.
Let x27 of type ι → ι → ι → ι be given.
Let x28 of type ι → ι → ι be given.
Let x29 of type ι → ι → ι → ι be given.
Let x30 of type ι → ι → ι → ι be given.
Let x31 of type ι → ι → ι → ι be given.
Let x32 of type ι be given.
Let x33 of type ι be given.
Let x34 of type ι be given.
Let x35 of type ι → ι be given.
Let x36 of type ι → ι → ο be given.
Let x37 of type ι → ι be given.
Let x38 of type ι → ι be given.
Let x39 of type ι → ι → ο be given.
Let x40 of type ι → ι → ι be given.
Let x41 of type ι → ι be given.
Let x42 of type ι → ο be given.
Let x43 of type ι be given.
Let x44 of type ι → ο be given.
Let x45 of type ι → ι → ι → ι → ο be given.
Let x46 of type ι be given.
Let x47 of type ι → ο be given.
Assume H5:
∀ x48 x49 . x47 x49 ⟶ (x49 = x48 ⟶ False) ⟶ x47 x48 ⟶ False.
Assume H6:
∀ x48 x49 . x0 x48 x49 ⟶ x47 x49 ⟶ False.
Assume H7:
∀ x48 . x47 x48 ⟶ (x48 = x46 ⟶ False) ⟶ False.
Assume H8:
∀ x48 x49 x50 . x0 x48 x49 ⟶ x2 x49 (x1 x50) ⟶ x47 x50 ⟶ False.
Assume H9:
∀ x48 x49 x50 . x0 x49 x50 ⟶ x2 x50 (x1 x48) ⟶ (x2 x49 x48 ⟶ False) ⟶ False.
Assume H10:
∀ x48 x49 . x3 x49 x48 ⟶ (x2 x49 (x1 x48) ⟶ False) ⟶ False.
Assume H11:
∀ x48 x49 . x2 x49 (x1 x48) ⟶ (x3 x49 x48 ⟶ False) ⟶ False.
Assume H12:
∀ x48 x49 . x2 x48 x49 ⟶ (x47 x49 ⟶ False) ⟶ (x0 x48 x49 ⟶ False) ⟶ False.
Assume H13:
∀ x48 x49 . x0 x49 x48 ⟶ (x2 x49 x48 ⟶ False) ⟶ False.
Assume H14:
∀ x48 x49 x50 x51 . x4 x51 ⟶ x9 x51 x48 x49 ⟶ x2 x51 (x1 (x5 x48 x49)) ⟶ x4 x50 ⟶ x9 x50 x48 x49 ⟶ x2 x50 (x1 (x5 x48 x49)) ⟶ x6 x51 (x7 x50 x51 x49 x48) = x6 x50 (x7 x50 x51 x49 x48) ⟶ (x8 x48 x49 x51 x50 ⟶ False) ⟶ False.
Assume H15:
∀ x48 x49 x50 x51 . x4 x51 ⟶ x9 x51 x48 x49 ⟶ x2 x51 (x1 (x5 x48 x49)) ⟶ x4 x50 ⟶ x9 x50 x48 x49 ⟶ x2 x50 (x1 (x5 x48 x49)) ⟶ (x0 (x7 x50 x51 x49 x48) x48 ⟶ False) ⟶ (x8 x48 x49 x51 x50 ⟶ False) ⟶ False.
Assume H16:
∀ x48 x49 x50 x51 . x2 x51 (x1 (x5 x50 x49)) ⟶ x2 x48 (x1 (x5 x50 x49)) ⟶ x8 x50 x49 x51 x48 ⟶ (x8 x50 x49 x48 x51 ⟶ False) ⟶ False.
Assume H17:
∀ x48 x49 x50 x51 . ... ⟶ ... ⟶ ... ⟶ ... ⟶ x9 ... ... ... ⟶ x2 x50 (x1 (x5 x48 x49)) ⟶ x45 x48 x49 x51 x50 ⟶ (x45 x48 x49 x50 x51 ⟶ False) ⟶ False.