Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 . (∃ x2 : ι → ι . ∃ x3 x4 x5 . ∃ x6 : ι → ι → ι → ι . MetaCat_nno_p PER BinRelnHom struct_id struct_comp x1 x2 x3 x4 x5 x6)x0.
Apply H0 with pack_r 1 (λ x1 x2 . True).
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι . (∃ x3 x4 x5 . ∃ x6 : ι → ι → ι → ι . MetaCat_nno_p PER BinRelnHom struct_id struct_comp (pack_r 1 (λ x7 x8 . True)) x2 x3 x4 x5 x6)x1.
Apply H1 with λ x2 . lam (ap x2 0) (λ x3 . 0).
Let x2 of type ο be given.
Assume H2: ∀ x3 . (∃ x4 x5 . ∃ x6 : ι → ι → ι → ι . MetaCat_nno_p PER BinRelnHom struct_id struct_comp (pack_r 1 (λ x7 x8 . True)) (λ x7 . lam (ap x7 0) (λ x8 . 0)) x3 x4 x5 x6)x2.
Apply H2 with pack_r omega (λ x3 x4 . x3 = x4).
Let x3 of type ο be given.
Assume H3: ∀ x4 . (∃ x5 . ∃ x6 : ι → ι → ι → ι . MetaCat_nno_p PER BinRelnHom struct_id struct_comp (pack_r 1 (λ x7 x8 . True)) (λ x7 . lam (ap x7 0) (λ x8 . 0)) (pack_r omega (λ x7 x8 . x7 = x8)) x4 x5 x6)x3.
Apply H3 with lam 1 (λ x4 . 0).
Let x4 of type ο be given.
Assume H4: ∀ x5 . (∃ x6 : ι → ι → ι → ι . MetaCat_nno_p PER BinRelnHom struct_id struct_comp (pack_r 1 (λ x7 x8 . True)) (λ x7 . lam (ap x7 0) (λ x8 . 0)) (pack_r omega (λ x7 x8 . x7 = x8)) (lam 1 (λ x7 . 0)) x5 x6)x4.
Apply H4 with lam omega (λ x5 . ordsucc x5).
Let x5 of type ο be given.
Assume H5: ∀ x6 : ι → ι → ι → ι . MetaCat_nno_p PER BinRelnHom struct_id struct_comp (pack_r 1 (λ x7 x8 . True)) (λ x7 . lam (ap x7 0) (λ x8 . 0)) (pack_r omega (λ x7 x8 . x7 = x8)) (lam 1 (λ x7 . 0)) (lam omega (λ x7 . ordsucc x7)) x6x5.
Apply H5 with λ x6 x7 x8 . lam omega (λ x9 . nat_primrec (ap x7 0) (λ x10 x11 . ap x8 x11) x9).
Claim L6: ...
...
Claim L7: ...
...
Claim L8: PER (pack_r omega (λ x6 x7 . x6 = x7))
Apply unknownprop_b2515235786361aea7c15ac6711d5751cd13b11988163a3b347abdb56aff828a with omega, λ x6 x7 . x6 = x7 leaving 2 subgoals.
Let x6 of type ι be given.
Assume H8: x6omega.
Let x7 of type ι be given.
Assume H9: x7omega.
Assume H10: (λ x8 x9 . x8 = x9) x6 x7.
Let x8 of type ιιο be given.
The subproof is completed by applying H10 with λ x9 x10 . x8 x10 x9.
Let x6 of type ι be given.
Assume H8: x6omega.
Let x7 of type ι be given.
Assume H9: x7omega.
Let x8 of type ι be given.
Assume H10: x8omega.
Assume H11: (λ x9 x10 . x9 = x10) x6 x7.
Assume H12: (λ x9 x10 . x9 = x10) x7 ....
...
Apply unknownprop_e3fb63acb1c0213d33e5570b26edc928a770a02dae8317a04707641cdd803978 with PER leaving 3 subgoals.
The subproof is completed by applying L6.
The subproof is completed by applying L7.
The subproof is completed by applying L8.