Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type (ιο) → ο be given.
Let x2 of type ιο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H0: 56056.. (98165.. x0 x1 x2 x3 x4).
Apply H0 with λ x5 . x5 = 98165.. x0 x1 x2 x3 x4prim1 x3 x0 leaving 2 subgoals.
Let x5 of type ι be given.
Let x6 of type (ιο) → ο be given.
Let x7 of type ιο be given.
Let x8 of type ι be given.
Assume H1: prim1 x8 x5.
Let x9 of type ι be given.
Assume H2: prim1 x9 x5.
Assume H3: 98165.. x5 x6 x7 x8 x9 = 98165.. x0 x1 x2 x3 x4.
Apply unknownprop_b39ff2b37b316184a9dc17dd16bf59eb71941c66354ada649e0471ec24c9a9cd with x5, x0, x6, x1, x7, x2, x8, x3, x9, x4, prim1 x3 x0 leaving 2 subgoals.
The subproof is completed by applying H3.
Assume H4: and (and (and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x5)x6 x10 = x1 x10)) (∀ x10 . prim1 x10 x5x7 x10 = x2 x10)) (x8 = x3).
Apply H4 with x9 = x4prim1 x3 x0.
Assume H5: and (and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x5)x6 x10 = x1 x10)) (∀ x10 . prim1 x10 x5x7 x10 = x2 x10).
Apply H5 with x8 = x3x9 = x4prim1 x3 x0.
Assume H6: and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x5)x6 x10 = x1 x10).
Apply H6 with (∀ x10 . prim1 x10 x5x7 x10 = x2 x10)x8 = x3x9 = x4prim1 x3 x0.
Assume H7: x5 = x0.
Assume H8: ∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x5)x6 x10 = x1 x10.
Assume H9: ∀ x10 . prim1 x10 x5x7 x10 = x2 x10.
Assume H10: x8 = x3.
Assume H11: x9 = x4.
Apply H7 with λ x10 x11 . prim1 x3 x10.
Apply H10 with λ x10 x11 . prim1 x10 x5.
The subproof is completed by applying H1.
Let x5 of type ιιο be given.
Assume H1: x5 (98165.. x0 x1 x2 x3 x4) (98165.. x0 x1 x2 x3 x4).
The subproof is completed by applying H1.