Let x0 of type ι be given.
Apply H0 with
λ x1 . x1 = 35104.. (f482f.. x1 4a7ef..) (decode_c (f482f.. x1 (4ae4a.. 4a7ef..))).
Let x1 of type ι be given.
Let x2 of type (ι → ο) → ο be given.
Apply unknownprop_73cbfbefa0026020cb29acf19575c6895e982d80894689a2eefd5ca0f4010f05 with
x1,
x2,
λ x3 x4 . 35104.. x1 x2 = 35104.. x3 (decode_c (f482f.. (35104.. x1 x2) (4ae4a.. 4a7ef..))).
Apply unknownprop_c3ba5b118081379269b0935441e53c8fb3ae18a072ce887e2d6b51d9c9780bbd with
x1,
x2,
decode_c (f482f.. (35104.. x1 x2) (4ae4a.. 4a7ef..)).
Let x3 of type ι → ο be given.
Assume H1:
∀ x4 . x3 x4 ⟶ prim1 x4 x1.
Apply unknownprop_a43e2c960a060cf2cbb41d55511fc48d292b3f138aadca7f276be3ed64c8fb26 with
x1,
x2,
x3,
λ x4 x5 : ο . iff (x2 x3) x4 leaving 2 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying iff_refl with x2 x3.