Let x0 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x1 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x3 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Apply H0 with
λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . or (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x4 x2 x1 x3 = λ x5 x6 . x5) (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x4 x2 x1 x3 = λ x5 x6 . x6) leaving 3 subgoals.
Apply H1 with
λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . or (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) x2 x4 x3 = λ x5 x6 . x5) (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) x2 x4 x3 = λ x5 x6 . x6) leaving 3 subgoals.
Apply H2 with
λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . or (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) x4 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) x3 = λ x5 x6 . x5) (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) x4 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) x3 = λ x5 x6 . x6) leaving 8 subgoals.
Apply H3 with
λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . or (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) x4 = λ x5 x6 . x5) (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) x4 = λ x5 x6 . x6) leaving 8 subgoals.
Apply orIL with
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) = λ x4 x5 . x4,
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) = λ x4 x5 . x5.
Let x4 of type (ι → ι → ι) → (ι → ι → ι) → ο be given.
Assume H4:
x4 (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5)) (λ x5 x6 . x5).
The subproof is completed by applying H4.
Apply orIL with
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x5) = λ x4 x5 . x4,
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x5) = λ x4 x5 . x5.
Let x4 of type (ι → ι → ι) → (ι → ι → ι) → ο be given.
Assume H4:
x4 (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x6)) (λ x5 x6 . x5).
The subproof is completed by applying H4.
Apply orIL with
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x6) = λ x4 x5 . x4,
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x6) = λ x4 x5 . x5.
Let x4 of type (ι → ι → ι) → (ι → ι → ι) → ο be given.
Assume H4:
x4 (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x7)) (λ x5 x6 . x5).
The subproof is completed by applying H4.
Apply orIR with
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x7) = λ x4 x5 . x4,
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x7) = λ x4 x5 . x5.
Let x4 of type (ι → ι → ι) → (ι → ι → ι) → ο be given.
Assume H4:
x4 (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x8)) (λ x5 x6 . x6).
The subproof is completed by applying H4.
Apply orIL with
TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x8) = ...,
....